Patents by Inventor Yasuaki Hagiwara

Yasuaki Hagiwara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6038653
    Abstract: The high-performance, RISC core based microprocessor architecture includes an instruction fetch unit for fetching instruction sets from an instruction store and an execution unit that implements the concurrent execution of a plurality of instructions through a parallel array of functional units. The fetch unit generally maintains a predetermined number of instructions in an instruction buffer. The execution unit includes an instruction selection unit, coupled to the instruction buffer, for selecting instructions for execution, and a plurality of functional units for performing instruction specified functional operations. A unified instruction scheduler, within the instruction selection unit, initiates the processing of instructions through the functional units when instructions are determined to be available for execution and for which at least one of the functional units implementing a necessary computational function is available.
    Type: Grant
    Filed: September 22, 1998
    Date of Patent: March 14, 2000
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 6038654
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instructions in-order.
    Type: Grant
    Filed: June 23, 1999
    Date of Patent: March 14, 2000
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 5961629
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instructions in-order.
    Type: Grant
    Filed: September 10, 1998
    Date of Patent: October 5, 1999
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 5941979
    Abstract: A computer system comprising a microprocessor architecture capable of supporting multiple processors comprising a memory array unit (MAU), an MAU system bus comprising data, address and control signal buses, an I/O bus comprising data, address and control signal buses, a plurality of I/O devices and a plurality of microprocessors. Data transfers between data and instruction caches and I/O devices and a memory and other I/O devices are handled using a switch network port data and instruction cache and I/O interface circuits. Access to the memory buses is controlled by arbitration circuits which utilize fixed and dynamic priority schemes.
    Type: Grant
    Filed: August 21, 1997
    Date of Patent: August 24, 1999
    Assignee: Seiko Epson Corporation
    Inventors: Derek J. Lentz, Yasuaki Hagiwara, Te-Li Lau, Cheng-Long Tang, Le Trong Nguyen
  • Patent number: 5832292
    Abstract: The high-performance, RISC core based microprocessor architecture includes an instruction fetch unit for fetching instruction sets from an instruction store and an execution unit that implements the concurrent execution of a plurality of instructions through a parallel array of functional units. The fetch unit generally maintains a predetermined number of instructions in an instruction buffer. The execution unit includes an instruction selection unit, coupled to the instruction buffer, for selecting instructions for execution, and a plurality of functional units for performing instruction specified functional operations. A unified instruction scheduler, within the instruction selection unit, initiates the processing of instructions through the functional units when instructions are determined to be available for execution and for which at least one of the functional units implementing a necessary computational function is available.
    Type: Grant
    Filed: September 23, 1996
    Date of Patent: November 3, 1998
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 5778434
    Abstract: A system and method for processing a sequence of requests for data by one or more central processing units (CPUs) after cache misses. Each CPU request includes a CPU-ID tag identifying the CPU issuing the request for data and an address identifying a location in lower-level memory where the data is stored. Cache-control ID tags are assigned to identify the locations in the request queue of the respective CPU-ID tags associated with each CPU request. Cache-control requests consisting of the cache-control ID tags and the respective address information are sent from the request queue to the lower-level memory or storage devices. Data is then returned along with the corresponding CCU-ID tags in the order in which it is returned by the storage devices. Finally, the sequence of CPU requests for data is fulfilled by returning the data and CPU-ID tag in the order in which the data was returned from lower-level memory.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: July 7, 1998
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Yasuaki Hagiwara
  • Patent number: 5754800
    Abstract: A computer system comprising a multiprocessor architecture capable of supporting multiple processors comprising a memory array unit (MAU), an MAU system bus comprising data, address and control signal buses, an I/O bus comprising data, address and control signal buses, a plurality of I/O devices and a plurality of microprocessors. Data transfers between data and instruction caches and I/O devices and a memory and other I/O devices are handled using a switch network and interface circuits. Access to the memory buses is controlled by arbitration circuits which utilize fixed and dynamic priority schemes. A row match comparison circuit is provided for reducing memory latency by giving an increased priority to successive requests for access to memory locations having the same row address.
    Type: Grant
    Filed: May 16, 1995
    Date of Patent: May 19, 1998
    Assignee: Seiko Epson Corporation
    Inventors: Derek J. Lentz, Yasuaki Hagiwara, Te-Li Lau, Cheng-Long Tang, Le Trong Nguyen
  • Patent number: 5689720
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches and stores program instruction sets. Each instruction set includes a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instruction sets and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers which are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instructions in-order.
    Type: Grant
    Filed: February 15, 1996
    Date of Patent: November 18, 1997
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 5604865
    Abstract: A computer system comprising a microprocessor architecture capable of supporting multiple processors. Data transfers between data and instruction caches, I/O devices, and a memory are handled using a switch network. Access to memory buses is controlled by arbitration circuits which utilize fixed and dynamic priority schemes. A test and set bypass circuit is provided for preventing a loss of memory bandwidth due to spin-locking. A row match comparison circuit is provided for reducing memory latency by giving an increased priority to successive requests for access to memory locations having the same row address. Dynamic switch/port arbitration is provided by changing device priority based on the intrinsic priority of the device, the number of times that a request has been serviced based on a row match, the number of times that a device has been denied service, and the number of times that a device has been serviced.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: February 18, 1997
    Assignee: Seiko Epson Corporation
    Inventors: Derek J. Lentz, Yasuaki Hagiwara, Te-Li Lau, Cheng-Long Tang, Le Trong Nguyen
  • Patent number: 5560032
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution and concurrent results distribution for enhanced resource utilization and performance throughput. The computer system architecture includes an instruction fetch unit for fetching program instruction sets. Each instruction set includes a plurality of fixed length instructions with a prescribed program order (in-order). The architecture also includes an instruction execution unit for dynamically examining the instruction sets and scheduling instructions for execution, including out-of-order execution, among a plurality of functional units. The data results of the executed instructions are concurrently distributed to a temporary buffer and a register file array and managed by associated control logic, including a register renaming unit, a dependency checker unit, done control unit, and retirement control unit.
    Type: Grant
    Filed: March 1, 1995
    Date of Patent: September 24, 1996
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 5539911
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches and stores program instruction sets. Each instruction set includes a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instruction sets and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers which are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instructions in-order.
    Type: Grant
    Filed: January 8, 1992
    Date of Patent: July 23, 1996
    Assignee: Seiko Epson Corporation
    Inventors: Le T. Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 5481685
    Abstract: Fast trap mechanism for a microprocessor, wherein a vector trap table is maintained which contains space for a plurality of instructions in each table entry. When a fast trap occurs, control is transferred directly into the table entry corresponding to the trap number. The trap handler can be located completely inside the table entry, or it can transfer control to additional handler code.
    Type: Grant
    Filed: November 21, 1994
    Date of Patent: January 2, 1996
    Assignee: Seiko Epson Corporation
    Inventors: Le T. Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Quang Trang
  • Patent number: 5448705
    Abstract: A method for use in a microprocessor to return execution to a main program after processing an interruption to the sequential processing of instructions from the main instruction stream is disclosed. The method comprises fetching instructions from a main instruction stream to a main buffer section of a prefetch buffer and executing said fetched instructions. The method also provides for handling interruptions to the processing of the main instruction stream and allowing return to the main instruction stream without requiring prefetching of instructions already fetched. Similarly, the method provides for handling interruptions of the processing of interruptions of the processing of the main instruction stream.
    Type: Grant
    Filed: May 24, 1993
    Date of Patent: September 5, 1995
    Assignee: Seiko Epson Corporation
    Inventors: Le T. Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Quang Trang
  • Patent number: 5440752
    Abstract: A computer system comprising a microprocessor architecture capable of supporting multiple processors. Data transfers between data and instruction caches, I/O devices, and a memory am handled using a switch network. Access to memory buses is controlled by arbitration circuits which utilize fixed and dynamic priority schemes. A test and set bypass circuit is provided for preventing a loss of memory bandwidth due to spin-locking. A row match comparison circuit is provided for reducing memory latency by giving an increased priority to successive requests for access to memory locations having the same row address. Dynamic switch/port arbitration is provided by changing device priority based on the intrinsic priority of the device, the number of times that a request has been serviced based on a row match, the number of times that a device has been denied service, and the number of times that a device has been serviced.
    Type: Grant
    Filed: July 8, 1991
    Date of Patent: August 8, 1995
    Assignee: Seiko Epson Corporation
    Inventors: Derek J. Lentz, Yasuaki Hagiwara, Te-Li Lau, Cheng-Long Tang, Le Trong Nguyen
  • Patent number: 5309560
    Abstract: A data selection device having M+1 stages. Each stage has stored therein prioritized data. Selection of the highest prioritized data available at any instant in time is based on a comparison repeated M times of both the selectability and priority of data available from two different stages of the device. The highest prioritized data is provided at the output of the M+1 stage.
    Type: Grant
    Filed: October 13, 1992
    Date of Patent: May 3, 1994
    Assignee: Seiko Epson Corporation
    Inventors: Sachiyuki Abe, Hisao Sato, Hiroaki Nasu, Yasuaki Hagiwara