Patents by Inventor Yasuhiro Aruga

Yasuhiro Aruga has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150107726
    Abstract: The present invention provides a Cu—Fe—P alloy which has a high strength, high conductivity and superior bending workability. The copper alloy comprises 0.01 to 1.0% Fe, 0.01 to 0.4% P, 0.1 to 1.0% Mg, and the remainder Cu and unavoidable impurities. The size of oxides and precipitates including Mg in the copper alloy is controlled so that the ratio of the amount of Mg measured by a specified measurement method in the extracted residue by a specified extracted residue method to the Mg content in said copper alloy is 60% or less, thus endowing the alloy with a high strength and superior bending workability.
    Type: Application
    Filed: December 29, 2014
    Publication date: April 23, 2015
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yasuhiro ARUGA, Katsura Kajihara, Takeshi Kudo
  • Publication number: 20150007909
    Abstract: This aluminum alloy sheet is a 6000-series aluminum alloy sheet of a specific composition which, after rolling, has undergone solution hardening and reheating as tempering treatments. The aluminum alloy sheet in differential scanning calorimetry gives a curve in which the exothermic-peak heights A, B, and C in respective specific temperature ranges have relationships within specific given ranges to thereby raise the increase in 0.2% proof stress through low-temperature short-time artificial age-hardening to 100 MPa or more.
    Type: Application
    Filed: January 29, 2013
    Publication date: January 8, 2015
    Inventors: Katsushi Matsumoto, Yasuhiro Aruga, Hisao Shishido
  • Publication number: 20140193293
    Abstract: Disclosed is a copper alloy containing 1.0% to 3.6% of Ni, 0.2% to 1.0% of Si, 0.05% to 3.0% of Sn, 0.05% to 3.0% of Zn, with the remainder including copper and inevitable impurities. The copper alloy has an average grain size of 25 pm or less and has a texture having an average area percentage of cube orientation of 20% to 60% and an average total area percentage of brass orientation, S orientation and copper orientation of 20% to 50%. The copper alloy has a KAM value of 0.8 to 3.0 and does not suffer from cracking even when subjected to U-bending. The copper alloy has excellent balance between strengths (particularly yield strength in a direction perpendicular to the rolling direction) and bending workability.
    Type: Application
    Filed: August 4, 2011
    Publication date: July 10, 2014
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Hisao Shishido, Yasuhiro Aruga, Shinya Katsura, Katsushi Matsumoto
  • Patent number: 8715431
    Abstract: A Cu—Fe—P copper alloy sheet which has the high strength and the high electrical conductivity compatible with excellent bendability is provided. The Cu—Fe—P copper alloy sheet contains 0.01% to 3.0% of Fe and 0.01% to 0.3% of P on a percent by mass basis, wherein the orientation density of the Brass orientation is 20 or less and the sum of the orientation densities of the Brass orientation, the S orientation, and the Copper orientation is 10 or more and 50 or less in the microstructure of the copper alloy sheet.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: May 6, 2014
    Assignee: Kobe Steel, Ltd.
    Inventors: Yasuhiro Aruga, Katsura Kajihara
  • Patent number: 8641837
    Abstract: A Cu—Ni—Sn—P alloy is provided, which is excellent in stress relaxation property in a direction perpendicular to a rolling direction, and has any of high strength, high conductivity, and excellent bendability. A copper alloy contains 0.1 to 3.0% of Ni, 0.1 to 3.0% of Sn, and 0.01 to 0.3% of P in mass percent respectively, and includes copper and inevitable impurities as the remainder; wherein in a radial distribution function around a Ni atom according to a XAFS analysis method, a first peak position is within a range of 2.16 to 2.35 ?, the position indicating a distance between a Ni atom in Cu and an atom nearest to the Ni atom. Thus, distances to atoms around the Ni atom in Cu are comparatively increased, so that the stress relaxation property in a direction perpendicular to the rolling direction of the copper alloy is improved.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: February 4, 2014
    Assignee: Kobe Steel, Ltd.
    Inventors: Yasuhiro Aruga, Katsura Kajihara
  • Publication number: 20140003993
    Abstract: This aluminum alloy sheet has increased BH properties under low-temperature short-time-period conditions after long-term room-temperature aging by means of causing aggregates of specific atoms to be contained having a large effect in BH properties, the distance between atoms being no greater than a set distance, and containing either Mg atoms or Si atoms measured by 3D atom probe field ion microscopy in a 6000 aluminum alloy sheet containing a specific amount of Mg and Si.
    Type: Application
    Filed: March 13, 2012
    Publication date: January 2, 2014
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Katsushi Matsumoto, Yasuhiro Aruga, Hidemasa Tsuneishi
  • Publication number: 20130045130
    Abstract: The present invention relates to a copper alloy having high strength, high electrical conductivity, and excellent bendability, the copper alloy containing, in terms of mass %, 0.4 to 4.0% of Ni; 0.05 to 1.0% of Si; and, as an element M, one member selected from 0.005 to 0.5% of P, 0.005 to 1.0% of Cr, and 0.005 to 1.0% of Ti, with the remainder being copper and inevitable impurities, in which an atom number ratio M/Si of elements M and Si contained in a precipitate having a size of 50 to 200 nm in a microstructure of the copper alloy is from 0.01 to 10 on average, the atom number ratio being measured by a field emission transmission electron microscope with a magnification of 30,000 and an energy dispersive analyzer.
    Type: Application
    Filed: June 8, 2012
    Publication date: February 21, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yasuhiro ARUGA, Akira FUGONO, Takeshi KUDO, Katsura KAJIHARA
  • Patent number: 8357248
    Abstract: A copper alloy having high strength, high electrical conductivity, and excellent bendability, the copper alloy containing, in terms of mass %, 0.4 to 4.0% of Ni; 0.05 to 1.0% of Si; and, as an element M, one member selected from 0.005 to 0.5% of P, 0.005 to 1.0% of Cr, and 0.005 to 1.0% of Ti, with the remainder being copper and inevitable impurities, in which an atom number ratio M/Si of elements M and Si contained in a precipitate having a size of 50 to 200 nm in a microstructure of the copper alloy is from 0.01 to 10 on average, the atom number ratio being measured by a field emission transmission electron microscope with a magnification of 30,000 and an energy dispersive analyzer. According to the invention, it is possible to provide a copper alloy having high strength, high electrical conductivity, and excellent bendability.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: January 22, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Yasuhiro Aruga, Akira Fugono, Takeshi Kudo, Katsura Kajihara
  • Publication number: 20120308429
    Abstract: A shear plane ratio is reduced by a dislocation density in which a value obtained by dividing the half-value width ? of the intensity of diffraction of {311} plane in the surface of a Cu—Fe—P alloy sheet, by its peak height H, is 0.015 or more. In addition, a Cu—Fe—P alloy sheet with relatively small Fe content is provided with a texture in which a ratio (I(200)/I(220)) of intensity of diffraction of (I(200)) from the (200) plane in the sheet surface to intensity of diffraction of (I(220)) from the (220) plane, is 0.3 or less. In addition, a Cu—Fe—P alloy sheet with relatively small Fe content is provided with a texture in which the orientation distribution density of Brass orientation measured by the crystal orientation analysis method using an EBSP by an FE-SEM, is 25% or more; and an average grain size in the sheet is 6.0 ?m or less.
    Type: Application
    Filed: August 14, 2012
    Publication date: December 6, 2012
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yasuhiro ARUGA, Ryoichi Ozaki, Yosuke Miwa
  • Publication number: 20120288402
    Abstract: A copper alloy having high strength, high electrical conductivity, and excellent bendability, the copper alloy containing, in terms of mass %, 0.4 to 4.0% of Ni; 0.05 to 1.0% of Si; and, as an element M, one member selected from 0.005 to 0.5% of P, 0.005 to 1.0% of Cr, and 0.005 to 1.0% of Ti, with the remainder being copper and inevitable impurities, in which an atom number ratio M/Si of elements M and Si contained in a precipitate having a size of 50 to 200 nm in a microstructure of the copper alloy is from 0.01 to 10 on average, the atom number ratio being measured by a field emission transmission electron microscope with a magnification of 30,000 and an energy dispersive analyzer. According to the invention, it is possible to provide a copper alloy having high strength, high electrical conductivity, and excellent bendability.
    Type: Application
    Filed: June 8, 2012
    Publication date: November 15, 2012
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yasuhiro ARUGA, Akira FUGONO, Takeshi KUDO, Katsura KAJIHARA
  • Patent number: 8268098
    Abstract: The present invention relates to a copper alloy having high strength, high electrical conductivity, and excellent bendability, the copper alloy containing, in terms of mass %, 0.4 to 4.0% of Ni; 0.05 to 1.0% of Si; and, as an element M, one member selected from 0.005 to 0.5% of P, 0.005 to 1.0% of Cr, and 0.005 to 1.0% of Ti, with the remainder being copper and inevitable impurities, in which an atom number ratio M/Si of elements M and Si contained in a precipitate having a size of 50 to 200 nm in a microstructure of the copper alloy is from 0.01 to 10 on average, the atom number ratio being measured by a field emission transmission electron microscope with a magnification of 30,000 and an energy dispersive analyzer. According to the invention, it is possible to provide a copper alloy having high strength, high electrical conductivity, and excellent bendability.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: September 18, 2012
    Assignee: Kobe Steel, Ltd.
    Inventors: Yasuhiro Aruga, Akira Fugono, Takeshi Kudo, Katsura Kajihara
  • Publication number: 20120227870
    Abstract: An aluminum-alloy sheet includes 0.10 to 0.40 mass % of Si, 0.35 to 0.80 mass % of Fe, 0.10 to 0.35 mass % of Cu, 0.20 to 0.80 mass % of Mn, and 1.5 to 2.5 mass % of Mg, the balance being Al and unavoidable impurities, wherein a content ratio (Si/Fe) of the Si to the Fe is 0.75 or less, the solute Mn content is 0.12 to 0.20 mass %, and the aluminum-alloy sheet has a proof stress of 225 N/mm2 or more after having been baked at 270° C. for 20 seconds.
    Type: Application
    Filed: February 23, 2012
    Publication date: September 13, 2012
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd.)
    Inventors: Yuji Inoue, Yasuhiro Aruga, Katsushi Matsumoto, Kiyohito Tsuruda, Kazuharu Masada
  • Publication number: 20120227871
    Abstract: An aluminum-alloy sheet includes 0.10 to 0.40 mass % of Si, 0.35 to 0.80 mass % of Fe, 0.10 to 0.35 mass % of Cu, 0.20 to 0.80 mass % of Mn, and 1.5 to 2.5 mass % of Mg, the balance being Al and unavoidable impurities, wherein a content ratio (Si/Fe) of the Si to the Fe is 0.75 or less, the area fraction of Mg2Si intermetallic compound grains having a maximum length of 1 ?m or more is 0.10% or more in a region of a section of the aluminum-alloy sheet, the region being a central region in the thickness direction of the aluminum-alloy sheet, and the aluminum-alloy sheet has a proof stress of 225 to 270 N/mm2 after having been baked at 270° C. for 20 seconds.
    Type: Application
    Filed: February 23, 2012
    Publication date: September 13, 2012
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yuji INOUE, Yasuhiro Aruga, Katsushi Matsumoto, Kiyohito Tsuruda, Kazuharu Masada
  • Publication number: 20120148439
    Abstract: A copper alloy containing Ni: 1.5%-3.6% and Si: 0.3%-1.0% in terms of mass percent with the remainder consisting of copper and unavoidable impurities, wherein: the average crystal grain size of the crystal grains in the copper alloy is 5 to 30 ?m; the area ratio of the crystal grains having crystal grain sizes not less than twice the average crystal grain size is not less than 3%; and the ratio of the area of cube orientation grains to the area of the crystal grains having crystal grain sizes not less than twice the average crystal grain size is not less than 50%.
    Type: Application
    Filed: November 18, 2011
    Publication date: June 14, 2012
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Hisao SHISHIDO, Shinya Katsura, Yasuhiro Aruga, Katsushi Matsumoto
  • Publication number: 20120039743
    Abstract: A Cu—Fe—P alloy sheet that is provided with the high strength and with the improved resistance of peel off of oxidation film, in order to deal with problems such as package cracks and peeling, is provided. A copper alloy sheet for electric and electronic parts according to the present invention is a copper alloy sheet containing Fe: 0.01 to 0.50 mass % and P: 0.01 to 0.15 mass %, respectively, with the remainder of Cu and inevitable impurities. A centerline average roughness Ra is 0.2 ?m or less and a maximum height Rmax is 1.5 ?m or less, and Kurtosis (degree peakedness) Rku of roughness curve is 5.0 or less, in measurement of the surface roughness of the copper alloy sheet in accordance with JIS B0601.
    Type: Application
    Filed: October 27, 2011
    Publication date: February 16, 2012
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yasuhiro ARUGA, Ryoichi Ozaki, Yosuke Miwa
  • Publication number: 20120039741
    Abstract: A Cu—Fe—P alloy sheet that is provided with the high strength and with the improved resistance of peel off of oxidation film, in order to deal with problems such as package cracks and peeling, is provided. A copper alloy sheet for electric and electronic parts according to the present invention is a copper alloy sheet containing Fe: 0.01 to 0.50 mass % and P: 0.01 to 0.15 mass %, respectively, with the remainder of Cu and inevitable impurities. A centerline average roughness Ra is 0.2 ?m or less and a maximum height Rmax is 1.5 ?m or less, and Kurtosis (degree peakedness) Rku of roughness curve is 5.0 or less, in measurement of the surface roughness of the copper alloy sheet in accordance with JIS B0601.
    Type: Application
    Filed: October 27, 2011
    Publication date: February 16, 2012
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yasuhiro ARUGA, Ryoichi OZAKI, Yosuke MIWA
  • Publication number: 20120039742
    Abstract: A Cu—Fe—P alloy sheet that is provided with the high strength and with the improved resistance of peel off of oxidation film, in order to deal with problems such as package cracks and peeling, is provided. A copper alloy sheet for electric and electronic parts according to the present invention is a copper alloy sheet containing Fe: 0.01 to 0.50 mass % and P: 0.01 to 0.15 mass %, respectively, with the remainder of Cu and inevitable impurities. A centerline average roughness Ra is 0.2 ?m or less and a maximum height Rmax is 1.5 ?m or less, and Kurtosis (degree peakedness) Rku of roughness curve is 5.0 or less, in measurement of the surface roughness of the copper alloy sheet in accordance with JIS B0601.
    Type: Application
    Filed: October 27, 2011
    Publication date: February 16, 2012
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd)
    Inventors: Yasuhiro ARUGA, Ryoichi Ozaki, Yosuke Miwa
  • Patent number: 8063471
    Abstract: A Cu—Fe—P alloy sheet that is provided with the high strength and with the improved resistance of peel off of oxidation film, in order to deal with problems such as package cracks and peeling, is provided. A copper alloy sheet for electric and electronic parts according to the present invention is a copper alloy sheet containing Fe: 0.01 to 0.50 mass % and P: 0.01 to 0.15 mass %, respectively, with the remainder of Cu and inevitable impurities. A centerline average roughness Ra is 0.2 ?m or less and a maximum height Rmax is 1.5 ?m or less, and Kurtosis (degree peakedness) Rku of roughness curve is 5.0 or less, in measurement of the surface roughness of the copper alloy sheet in accordance with JIS B0601.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: November 22, 2011
    Assignee: Kobe Steel, Ltd.
    Inventors: Yasuhiro Aruga, Ryoichi Ozaki, Yosuke Miwa
  • Publication number: 20110223056
    Abstract: The present invention relates to a Cu—Ni—Sn—P-based copper alloy sheet having a specific composition, where (1) the copper alloy sheet is set to have an electrical conductivity of 32% IACS or more, a stress relaxation ratio in the direction parallel to the rolling direction of 15% or less, a 0.
    Type: Application
    Filed: July 24, 2008
    Publication date: September 15, 2011
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yasuhiro Aruga, Daisuke Hashimoto, Koya Nomura
  • Publication number: 20110182767
    Abstract: A copper alloy with an excellent stress relaxation resistance including Ni: 0.1 through 3.0 mass %, Sn: 0.01 through 3.0 mass %, P: 0.01 through 0.3 mass % and remainder copper and inevitable impurities, and the Ni content in extracted residues separated and left on a filter having filter mesh size of 0.1 ?m by using an extracted residues method accounting for 40 mass % or less of the Ni content in the copper alloy, wherein the extracted residues method requires that 10 g of the copper alloy is immersed in 300 ml of a methanol solution which contains 10 mass % of ammonium acetate, and using the copper alloy as the anode and platinum as the cathode, constant-current electrolysis is performed at the current density of 10 mA/cm2, and the solution in which the copper alloy is thus dissolved is subjected to suction filtration using a membrane filter of polycarbonate whose filter mesh size is 0.
    Type: Application
    Filed: April 1, 2011
    Publication date: July 28, 2011
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd.)
    Inventors: Yasuhiro Aruga, Koya Nomura, Katsura Kajihara, Yukio Sugishita, Hiroshi Sakamoto