Patents by Inventor Yasuhiro Oshiumi

Yasuhiro Oshiumi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11662724
    Abstract: A vehicle control system is provided to maintain an SOC level of the battery during autonomous operation of the vehicle. The control system is applied to a vehicle that can be operated autonomously by controlling an engine, a motor, a steering system, a brake system etc. autonomously by a controller, and the vehicle is allowed to coast by manipulating a clutch. During autonomous operation of the vehicle, a first coasting mode in which the engine is stopped and the clutch is disengaged is selected if the SOC level is higher than a threshold level, and a second coasting mode in which the engine is activated and the clutch is disengaged is selected if the SOC level is lower than the threshold level.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: May 30, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takahito Endo, Yasuhiro Oshiumi, Kensei Hata, Yasuyuki Kato, Yushi Seki, Katsuya Iwazaki, Hideaki Komada
  • Patent number: 11442447
    Abstract: A vehicle control system is provided to maintain an SOC level of the battery during autonomous operation of the vehicle. The control system is applied to a vehicle that can be operated autonomously by controlling an engine, a motor, a steering system, a brake system etc. autonomously by a controller, and the vehicle is allowed to coast by manipulating a clutch. During autonomous operation of the vehicle, a first coasting mode in which the engine is stopped and the clutch is disengaged is selected if the SOC level is higher than a threshold level, and a second coasting mode in which the engine is activated and the clutch is disengaged is selected if the SOC level is lower than the threshold level.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: September 13, 2022
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takahito Endo, Yasuhiro Oshiumi, Kensei Hata, Yasuyuki Kato, Yushi Seki, Katsuya Iwazaki, Hideaki Komada
  • Patent number: 11440533
    Abstract: A control system for a hybrid vehicle that reduces delay in engagement of a clutch when shifting an operating mode by manipulating the clutch. A controller is configured to adjust a speed of a first motor to a first standby speed at which the speed difference in a first clutch is reduced when an operating mode will be shifted from a single-motor mode to a first mode, and adjust a speed of the first motor to a second standby speed at which a speed difference in the second clutch is reduced when the operating mode will be shifted from the single-motor mode to a second mode.
    Type: Grant
    Filed: June 9, 2020
    Date of Patent: September 13, 2022
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, DENSO TEN LIMITED
    Inventors: Yukari Okamura, Yasuhiro Oshiumi, Yumeto Shiraki
  • Publication number: 20220050456
    Abstract: A vehicle control system is provided to maintain an SOC level of the battery during autonomous operation of the vehicle. The control system is applied to a vehicle that can be operated autonomously by controlling an engine, a motor, a steering system, a brake system etc. autonomously by a controller, and the vehicle is allowed to coast by manipulating a clutch. During autonomous operation of the vehicle, a first coasting mode in which the engine is stopped and the clutch is disengaged is selected if the SOC level is higher than a threshold level, and a second coasting mode in which the engine is activated and the clutch is disengaged is selected if the SOC level is lower than the threshold level.
    Type: Application
    Filed: October 29, 2021
    Publication date: February 17, 2022
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takahito ENDO, Yasuhiro OSHIUMI, Kensei HATA, Yasuyuki KATO, Yushi SEKI, Katsuya IWAZAKI, Hideaki KOMADA
  • Patent number: 11242046
    Abstract: A control system for a hybrid vehicle configured to prevent a reduction in the purifying performance of the catalyst in a predetermined operating mode. An operating mode of the hybrid vehicle can be selected from a first hybrid vehicle mode, a second hybrid vehicle mode, and a fixed mode. A controller that is configured to restrict a shifting operation between the first hybrid vehicle mode and the second hybrid vehicle mode via the fixed mode, when the purifying device is being warmed or the purifying device has to be warmed.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: February 8, 2022
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tatsuya Imamura, Kazuma Aoki, Yasuhiro Oshiumi, Yukari Okamura
  • Patent number: 11108093
    Abstract: A power-supply control device includes: a distribution adjustment unit adjusting electric energy; and a loss comparison unit comparing losses in power running and regeneration and determining, with respect to power running and regeneration, whether a loss in a current state is smaller. Further, the distribution adjustment unit adjusts the electric energy by performing the distribution in accordance with the remaining capacity ratio in the current state in a case where it is determined that the loss in power running is smaller when the current state is a power running state or in a case where it is determined that the loss in regeneration is smaller when the current state is a regeneration state.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: August 31, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Taiga Hagimoto, Yasuhiro Oshiumi, Satoru Ito, Tatsuya Yoshida
  • Patent number: 11007997
    Abstract: A control system for preventing engine stall due to slippage of a wheel during propulsion in a fixed mode in which an engine and the wheel are rotated at a fixed ratio. When a wheel slips in a first mode in which an engine and the wheel are rotated at a predetermined ratio, an operating mode is shifted to a second mode in which a torque transmission between the engine and the wheel is interrupted and the vehicle is propelled by torque of driving machine connected to the wheel, or to a third mode in which the vehicle is propelled by delivering torque of the engine to the wheel while establishing a reaction torque by a predetermined rotary member.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: May 18, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yukari Okamura, Yasuhiro Oshiumi, Tatsuya Imamura, Kazuma Aoki
  • Patent number: 10955050
    Abstract: A drive control device for a vehicle is configured: to determine whether or not a sound pressure level inside a vehicle cabin becomes a predetermined value or less, under a state where it is predicted that a meshing-type engagement mechanism is changed from a disengaged state to an engaged state; and to prohibit the meshing-type engagement mechanism from entering the disengaged state, when it is determined that the sound pressure level becomes the predetermined value or less. In the disengaged state, transmission of a power output from a driving force source to driving wheels as drive energy is interrupted.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: March 23, 2021
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tatsuya Imamura, Yasuhiro Oshiumi, Kazuma Aoki, Yukari Okamura
  • Patent number: 10946853
    Abstract: A control system for hybrid vehicles to prevent a reduction in a brake force when an electrical input to a battery is restricted. A controller is configured to execute a regeneration control to deliver a regenerative torque resulting from operating second motor as a generator to the drive wheels, and an engine brake control to deliver a brake torque resulting from a power loss of an engine to the output member. The controller is further configured to select an HV-Lo mode when an input power allowed to accumulate in the battery is smaller than a threshold power.
    Type: Grant
    Filed: November 12, 2018
    Date of Patent: March 16, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kazuma Aoki, Tatsuya Imamura, Yasuhiro Oshiumi, Yukari Okamura
  • Patent number: 10926621
    Abstract: A control system for a hybrid vehicle configured to prevent an excessive drop in an engine speed and while reducing vibrations when decelerating the vehicle abruptly. When an abrupt decelerating operation is detected in the fixed mode, a controller shifts an operating mode from the fixed mode to the high mode or the low mode by disengaging one of engagement devices in which a torque applied thereto in the fixed mode is reduced smaller by an inertia torque of the motor resulting from the decelerating operation.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: February 23, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Yasuhiro Oshiumi
  • Publication number: 20200398820
    Abstract: A control system for a hybrid vehicle that reduces delay in engagement of a clutch when shifting an operating mode by manipulating the clutch. A controller is configured to adjust a speed of a first motor to a first standby speed at which the speed difference in a first clutch is reduced when an operating mode will be shifted from a single-motor mode to a first mode, and adjust a speed of the first motor to a second standby speed at which a speed difference in the second clutch is reduced when the operating mode will be shifted from the single-motor mode to a second mode.
    Type: Application
    Filed: June 9, 2020
    Publication date: December 24, 2020
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, DENSO TEN Limited
    Inventors: Yukari OKAMURA, Yasuhiro OSHIUMI, Yumeto SHIRAKI
  • Patent number: 10850600
    Abstract: A drive force control system for hybrid vehicles to prevent a reduction in drive force during reverse propulsion while operating an engine. An operating mode of a transmission mechanism can be selected from a first mode in which the output torque of the engine is delivered to the output member at a first predetermined ratio and a second mode in which the output torque of the engine is delivered to the output member at a second predetermined ratio that is smaller than the first predetermined ratio. A controller is configured to restrict selection of the first mode when the engine generates a power greater than a predetermined power during propulsion of the hybrid vehicle in the reverse direction.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: December 1, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yukari Okamura, Tatsuya Imamura, Yasuhiro Oshiumi, Kazuma Aoki
  • Publication number: 20200301416
    Abstract: A vehicle control system is provided to maintain an SOC level of the battery during autonomous operation of the vehicle. The control system is applied to a vehicle that can be operated autonomously by controlling an engine, a motor, a steering system, a brake system etc. autonomously by a controller, and the vehicle is allowed to coast by manipulating a clutch. During autonomous operation of the vehicle, a first coasting mode in which the engine is stopped and the clutch is disengaged is selected if the SOC level is higher than a threshold level, and a second coasting mode in which the engine is activated and the clutch is disengaged is selected if the SOC level is lower than the threshold level.
    Type: Application
    Filed: June 10, 2020
    Publication date: September 24, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takahito ENDO, Yasuhiro OSHIUMI, Kensei HATA, Yasuyuki KATO, Yushi SEKI, Katsuya IWAZAKI, Hideaki KOMADA
  • Patent number: 10759410
    Abstract: A control system for hybrid vehicles to prevent a reduction in a drive force when an output power of a battery is restricted. A first motor translates an output power of the engine partially into an electric power. A transmission mechanism distributes an output torque of the engine to the first rotary machine side and an output member side. A second motor is operated by one of the electric power translated by the first rotary machine and an electric power accumulated in the battery to generate a power. An operating mode can be selected from a first mode in which the output torque of the engine is delivered to the output member side at a first ratio, and a second mode in which the output torque of the engine is delivered to the output member side at a second ratio. The second ratio is smaller than the first ratio. A controller is configured to restrict selection of the first mode when an available output power of the battery to be supplied to the second rotary machine is smaller than a predetermined value.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: September 1, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kazuma Aoki, Tatsuya Imamura, Yasuhiro Oshiumi, Kentaro Kanzaki, Yukari Okamura
  • Patent number: 10737682
    Abstract: A drive force control system for hybrid vehicles configured to reduce a change in a drive force simultaneous execution of a starting operation of an engine and a shifting operation of a transmission. The drive force control is applied to a hybrid vehicle comprising: an engine connected to front wheels; a first motor connected to rear wheels; and a transmission that changes a speed ratio between the first motor and the rear wheels. A controller restricts execution of any one of an engine staring operation and a shifting operation of the transmission during execution of other one of the engine staring operation and shifting operation of the transmission.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: August 11, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tatsuya Imamura, Yasuhiro Oshiumi, Kazuma Aoki, Yukari Okamura
  • Patent number: 10712741
    Abstract: A vehicle control system is provided to maintain an SOC level of the battery during autonomous operation of the vehicle. The control system is applied to a vehicle that can be operated autonomously by controlling an engine, a motor, a steering system, a brake system etc. autonomously by a controller, and the vehicle is allowed to coast by manipulating a clutch. During autonomous operation of the vehicle, a first coasting mode in which the engine is stopped and the clutch is disengaged is selected if the SOC level is higher than a threshold level, and a second coasting mode in which the engine is activated and the clutch is disengaged is selected if the SOC level is lower than the threshold level.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: July 14, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takahito Endo, Yasuhiro Oshiumi, Kensei Hata, Yasuyuki Kato, Yushi Seki, Katsuya Iwazaki, Hideaki Komada
  • Publication number: 20200189381
    Abstract: A control system for a hybrid vehicle configured to prevent an excessive drop in an engine speed and while reducing vibrations when decelerating the vehicle abruptly. When an abrupt decelerating operation is detected in the fixed mode, a controller shifts an operating mode from the fixed mode to the high mode or the low mode by disengaging one of engagement devices in which a torque applied thereto in the fixed mode is reduced smaller by an inertia torque of the motor resulting from the decelerating operation.
    Type: Application
    Filed: November 21, 2019
    Publication date: June 18, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Yasuhiro Oshiumi
  • Patent number: 10654353
    Abstract: A vehicle includes an engine, a transmission mechanism, and an electronic control unit. The electronic control unit performs first switching control when there is a request for switching from a low mode to a high mode. The first switching control is to release a first engagement mechanism, and switch a second engagement mechanism to an engaged state when a difference between input and output rotational speeds of the second engagement mechanism becomes equal to or smaller than a permissible value.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: May 19, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kazuma Aoki, Tatsuya Imamura, Yasuhiro Oshiumi, Yukari Okamura, Yuji Iwase
  • Publication number: 20200148190
    Abstract: A control system for a hybrid vehicle configured to prevent a reduction in the purifying performance of the catalyst in a predetermined operating mode. An operating mode of the hybrid vehicle can be selected from a first hybrid vehicle mode, a second hybrid vehicle mode, and a fixed mode. A controller that is configured to restrict a shifting operation between the first hybrid vehicle mode and the second hybrid vehicle mode via the fixed mode, when the purifying device is being warmed or the purifying device has to be warmed.
    Type: Application
    Filed: October 15, 2019
    Publication date: May 14, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tatsuya IMAMURA, Kazuma AOKI, Yasuhiro OSHIUMI, Yukari OKAMURA
  • Patent number: 10647190
    Abstract: A control system for hybrid vehicle that can limit damage on a battery resulting from cranking of an engine. the controller is configured to shift an operating mode from an EV-Lo mode to an EV-Hi mode if a peak power applied to a battery during shifting the operating mode from the EV-Lo mode to the EV-Hi mode is expected to exceed an upper limit input power to the battery.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: May 12, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kazuma Aoki, Tatsuya Imamura, Yasuhiro Oshiumi, Yukari Okamura