Patents by Inventor Yasuo Kitaoka
Yasuo Kitaoka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20150315723Abstract: A nitride crystal which encircles an outer periphery of a seed crystal, the nitride crystal in an embodiment includes: a first partial region, and a second partial region that has optical characteristics different from those of the first partial region and has optical characteristics which indicate the crystal orientation.Type: ApplicationFiled: June 23, 2015Publication date: November 5, 2015Applicants: RICOH COMPANY, LIMITED, OSAKA UNIVERSITYInventors: Takashi Satoh, Seiji SARAYAMA, Hirokazu IWATA, Yusuke MORI, Yasuo KITAOKA
-
Patent number: 9096950Abstract: A nitride crystal which encircles an outer periphery of a seed crystal, the nitride crystal in an embodiment includes: a first partial region, and a second partial region that has optical characteristics different from those of the first partial region and has optical characteristics which indicate the crystal orientation.Type: GrantFiled: June 21, 2011Date of Patent: August 4, 2015Assignees: RICOH COMPANY, LTD., OSAKA UNIVERSITYInventors: Takashi Satoh, Seiji Sarayama, Hirokazu Iwata, Yusuke Mori, Yasuo Kitaoka
-
Publication number: 20140030549Abstract: A method for producing a high-quality group-III element nitride crystal at a high crystal growth rate, and a group-III element nitride crystal are provided. The method includes the steps of placing a group-III element, an alkali metal, and a seed crystal of group-III element nitride in a crystal growth vessel, pressurizing and heating the crystal growth vessel in an atmosphere of nitrogen-containing gas, and causing the group-III element and nitrogen to react with each other in a melt of the group-III element, the alkali metal and the nitrogen so that a group-III element nitride crystal is grown using the seed crystal as a nucleus. A hydrocarbon having a boiling point higher than the melting point of the alkali metal is added before the pressurization and heating of the crystal growth vessel.Type: ApplicationFiled: September 30, 2013Publication date: January 30, 2014Applicant: RICOH COMPANY, LTD.Inventors: Osamu Yamada, Hisashi Minemoto, Kouichi Hiranaka, Takeshi Hatakeyama, Takamoto Sasaki, Yusuke Mori, Fumio Kawamura, Yasuo Kitaoka
-
Patent number: 8574361Abstract: A method for producing a high-quality group-III element nitride crystal at a high crystal growth rate, and a group-III element nitride crystal are provided. The method includes the steps of placing a group-III element, an alkali metal, and a seed crystal of group-III element nitride in a crystal growth vessel, pressurizing and heating the crystal growth vessel in an atmosphere of nitrogen-containing gas, and causing the group-III element and nitrogen to react with each other in a melt of the group-III element, the alkali metal and the nitrogen so that a group-III element nitride crystal is grown using the seed crystal as a nucleus. A hydrocarbon having a boiling point higher than the melting point of the alkali metal is added before the pressurization and heating of the crystal growth vessel.Type: GrantFiled: March 5, 2008Date of Patent: November 5, 2013Assignee: Ricoh Company, Ltd.Inventors: Osamu Yamada, Hisashi Minemoto, Kouichi Hiranaka, Takeshi Hatakeyama, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura, Yasuo Kitaoka
-
Patent number: 8568532Abstract: Materials of a nitride single crystal of a metal belonging to III group and a flux are contained in a crucible, which is contained in a reaction container, the reaction container is contained in an outer container, the outer container is contained in a pressure container, and nitrogen-containing atmosphere is supplied into the outer container and melt is generated in the crucible to grow a nitride single crystal of a metal belonging to III group. The reaction container includes a main body containing the crucible and a lid. The main body includes a side wall having a fitting face and a groove opening at the fitting face and a bottom wall. The lid has an upper plate part including a contact face for the fitting face of the main body and a flange part extending from the upper plate part and surrounding an outer side of said side wall.Type: GrantFiled: December 9, 2011Date of Patent: October 29, 2013Assignees: NGK Insulators, Ltd.Inventors: Makoto Iwai, Shuhei Higashihara, Yusuke Mori, Yasuo Kitaoka, Naoya Miyoshi
-
Patent number: 8506705Abstract: A nitride single crystal is produced on a seed crystal substrate 5 in a melt containing a flux and a raw material of the single crystal in a growing vessel 1. The melt 2 in the growing vessel 1 has temperature gradient in a horizontal direction. In growing a nitride single crystal by flux method, adhesion of inferior crystals onto the single crystal is prevented and the film thickness of the single crystal is made constant.Type: GrantFiled: September 9, 2009Date of Patent: August 13, 2013Assignee: NGK Insulators, Ltd.Inventors: Mikiya Ichimura, Katsuhiro Imai, Makoto Iwai, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura, Yasuo Kitaoka
-
Patent number: 8507364Abstract: An object of the present invention is to realize, by the flux process, the production of a high-quality n-type semiconductor crystal having high concentration of electrons. The method of the invention for producing an n-type Group III nitride-based compound semiconductor by the flux process, the method including preparing a melt by melting at least a Group III element by use of a flux; supplying a nitrogen-containing gas to the melt; and growing an n-type Group III nitride-based compound semiconductor crystal on a seed crystal from the melt. In the method, carbon and germanium are dissolved in the melt, and germanium is incorporated as a donor into the semiconductor crystal, to thereby produce an n-type semiconductor crystal. The mole percentage of germanium to gallium in the melt is 0.05 mol % to 0.5 mol %, and the mole percentage of carbon to sodium is 0.1 mol % to 3.0 mol %.Type: GrantFiled: May 20, 2009Date of Patent: August 13, 2013Assignees: Toyoda Gosei Co., Ltd., NGK Insulators, Ltd., Osaka UniversityInventors: Seiji Nagai, Shiro Yamazaki, Yasuhide Yakushi, Takayuki Sato, Makoto Iwai, Katsuhiro Imai, Yusuke Mori, Yasuo Kitaoka
-
Patent number: 8501141Abstract: An object of the present invention is to effectively add Ge in the production of GaN through the Na flux method. In a crucible, a seed crystal substrate is placed such that one end of the substrate remains on the support base, whereby the seed crystal substrate remains tilted with respect to the bottom surface of the crucible, and gallium solid and germanium solid are placed in the space between the seed crystal substrate and the bottom surface of the crucible. Then, sodium solid is placed on the seed crystal substrate. Through employment of this arrangement, when a GaN crystal is grown on the seed crystal substrate through the Na flux method, germanium is dissolved in molten gallium before formation of a sodium-germanium alloy. Thus, the GaN crystal can be effectively doped with Ge.Type: GrantFiled: March 26, 2010Date of Patent: August 6, 2013Assignees: Toyoda Gosei Co., Ltd., NGK Insulators, Ltd., Osaka UniversityInventors: Takayuki Sato, Seiji Nagai, Makoto Iwai, Shuhei Higashihara, Yusuke Mori, Yasuo Kitaoka
-
Method and device for converting an emission beam from a laser light source into 2-dimensional light
Patent number: 8317333Abstract: A 2-dimensional beam scan unit reflects emission beams from a red laser light source, a green laser light source and a blue laser light source and scans in a 2-dimensional direction. Diffusion plates diffuse the respective light beams scanned in the 2-dimensional direction to introduce them to corresponding spatial light modulation elements. The respective spatial light modulation elements modulate the respective lights in accordance with video signals of the respective colors. A dichroic prism multiplexes the lights of the three colors after the modulation and introduces the multiplexed lights to a projection lens so that a color image is displayed on a screen. Since the 2-dimensional light emitted from the beam scan unit is diffused to illuminate the spatial light modulation element, it is possible to change the optical axis of the beam emerging from the light diffusion member for irradiating the spatial light modulation element moment by moment, thereby effectively suppressing speckle noise.Type: GrantFiled: August 8, 2011Date of Patent: November 27, 2012Assignee: Panasonic CorporationInventors: Kenichi Kasazumi, Yasuo Kitaoka, Kiminori Mizuuchi, Kazuhisa Yamamoto -
Patent number: 8231726Abstract: An object of the present invention is to obtain, with respect to a semiconductor light-emitting element using a group III nitride semiconductor substrate, a semiconductor light-emitting element having an excellent light extraction property by selecting a specific substrate dopant and controlling the concentration thereof. The semiconductor light-emitting element comprises a substrate composed of a group III nitride semiconductor comprising germanium (Ge) as a dopant, an n-type semiconductor layer composed of a group III nitride semiconductor formed on the substrate, an active layer composed of a group III nitride semiconductor formed on the n-type semiconductor layer, and a p-type semiconductor layer composed of a group III nitride semiconductor formed on the active layer in which the substrate has a germanium (Ge) concentration of 2×1017 to 2×1019 cm?3.Type: GrantFiled: January 19, 2007Date of Patent: July 31, 2012Assignee: Panasonic CorporationInventors: Hisashi Minemoto, Yasuo Kitaoka, Yasutoshi Kawaguchi, Yasuhito Takahashi, Yoshiaki Hasegawa
-
Publication number: 20120183006Abstract: After forming domain inverted layers 3 in an LiTaO3 substrate 1, an optical waveguide is formed. By performing low-temperature annealing for the optical wavelength conversion element thus formed, a stable proton exchange layer 8 is formed, where an increase in refractive index generated during high-temperature annealing is lowered, thereby providing a stable optical wavelength conversion element. Thus, the phase-matched wavelength becomes constant, and variation in harmonic wave output is eliminated. Consequently, with respect to an optical wavelength conversion element utilizing a non-linear optical effect, a highly reliable element is provided.Type: ApplicationFiled: August 6, 2007Publication date: July 19, 2012Applicant: Matsushita Electric Industrial Co., Ltd.Inventors: Kazuhisa YAMAMOTO, Kiminori Mizuuchi, Yasuo Kitaoka, Makoto Kato
-
Publication number: 20120168695Abstract: A method for producing a high-quality group-III element nitride crystal at a high crystal growth rate, and a group-III element nitride crystal are provided. The method includes the steps of placing a group-III element, an alkali metal, and a seed crystal of group-III element nitride in a crystal growth vessel, pressurizing and heating the crystal growth vessel in an atmosphere of nitrogen-containing gas, and causing the group-III element and nitrogen to react with each other in a melt of the group-III element, the alkali metal and the nitrogen so that a group-III element nitride crystal is grown using the seed crystal as a nucleus. A hydrocarbon having a boiling point higher than the melting point of the alkali metal is added before the pressurization and heating of the crystal growth vessel.Type: ApplicationFiled: March 5, 2008Publication date: July 5, 2012Applicant: PANASONIC CORPORATIONInventors: Osamu YAMADA, Hisashi MINEMOTO, Kouichi HIRANAKA, Takeshi HATAKEYAMA, Takatomo SASAKI, Yusuke MORI, Fumio KAWAMURA, Yasuo KITAOKA
-
Publication number: 20120137961Abstract: Materials of a nitride single crystal of a metal belonging to III group and a flux are contained in a crucible, which is contained in a reaction container, the reaction container is contained in an outer container, the outer container is contained in a pressure container, and nitrogen-containing atmosphere is supplied into the outer container and melt is generated in the crucible to grow a nitride single crystal of a metal belonging to III group. The reaction container includes a main body containing the crucible and a lid. The main body includes a side wall having a fitting face and a groove opening at the fitting face and a bottom wall. The lid has an upper plate part including a contact face for the fitting face of the main body and a flange part extending from the upper plate part and surrounding an outer side of said side wall.Type: ApplicationFiled: December 9, 2011Publication date: June 7, 2012Inventors: Makoto Iwai, Shuhei Higashihara, Yusuke Mori, Yasuo Kitaoka, Naoya Miyoshi
-
Patent number: 8187507Abstract: A method for producing a GaN crystal capable of achieving at least one of the prevention of nucleation and the growth of a high-quality non-polar surface is provided. The production method of the present invention is a method for producing a GaN crystal in a melt containing at least an alkali metal and gallium, including an adjustment step of adjusting the carbon content of the melt, and a reaction step of causing the gallium and nitrogen to react with each other. According to the production method of the present invention, nucleation can be prevented, and as shown in FIG. 4, a non-polar surface can be grown.Type: GrantFiled: November 14, 2007Date of Patent: May 29, 2012Assignee: Osaka UniversityInventors: Yusuke Mori, Takatomo Sasaki, Fumio Kawamura, Masashi Yoshimura, Minoru Kawahara, Yasuo Kitaoka, Masanori Morishita
-
Publication number: 20120003446Abstract: A nitride crystal which encircles an outer periphery of a seed crystal, the nitride crystal in an embodiment includes: a first partial region, and a second partial region that has optical characteristics different from those of the first partial region and has optical characteristics which indicate the crystal orientation.Type: ApplicationFiled: June 21, 2011Publication date: January 5, 2012Applicants: OSAKA UNIVERSITY, RICOH COMPANY, LTD.Inventors: Takashi SATOH, Seiji Sarayama, Hirokazu Iwata, Yusuke Mori, Yasuo Kitaoka
-
Publication number: 20110292350Abstract: A 2-dimensional beam scan unit reflects emission beams from a red laser light source, a green laser light source and a blue laser light source and scans in a 2-dimensional direction. Diffusion plates diffuse the respective light beams scanned in the 2-dimensional direction to introduce them to corresponding spatial light modulation elements. The respective spatial light modulation elements modulate the respective lights in accordance with video signals of the respective colors. A dichroic prism multiplexes the lights of the three colors after the modulation and introduces the multiplexed lights to a projection lens so that a color image is displayed on a screen. Since the 2-dimensional light emitted from the beam scan unit is diffused to illuminate the spatial light modulation element, it is possible to change the optical axis of the beam emerging from the light diffusion member for irradiating the spatial light modulation element moment by moment, thereby effectively suppressing speckle noise.Type: ApplicationFiled: August 8, 2011Publication date: December 1, 2011Inventors: Kenichi KASAZUMI, Yasuo Kitaoka, Kiminori Mizuuchi, Kazuhisa Yamamoto
-
Publication number: 20110259261Abstract: It is provided a method of growing a single crystal by flux process from a melt containing sodium, in that a flux is contained in a reaction vessel made of yttrium-aluminum garnet. Compared with the case that an alumina or yttria vessel is used, it can be successfully obtained a single crystal whose incorporation amounts of oxygen and silicon can be considerably reduced, residual carrier density can be lowered, and electron mobility and specific resistance can be improved.Type: ApplicationFiled: July 6, 2011Publication date: October 27, 2011Applicants: NGK Insulators, Ltd., Osaka University, Toyoda Gosei Co., Ltd.Inventors: Makoto IWAI, Shuhei Higashihara, Yasuo Kitaoka, Yusuke Mori, Takayuki Sato, Seiji Nagai
-
Patent number: 8018134Abstract: A light source of the present invention includes: a semiconductor light emitting device which has a light emitting face and emits light from part of the light emitting face; a container which has a light transmitting window for transmitting the light and accommodates the semiconductor light emitting device; and a gettering portion for performing gettering of a material containing at least one of carbon and silicon. The gettering portion is positioned, in the container, in a region other than the part of the light emitting face of the semiconductor light emitting device.Type: GrantFiled: June 12, 2008Date of Patent: September 13, 2011Assignee: Panasonic CorporationInventors: Isao Kidoguchi, Yasuo Kitaoka, Hiroyoshi Yajima, Keiji Ito, Akihiko Ishibashi, Yoshiaki Hasegawa, Kiminori Mizuuchi
-
Patent number: 8016428Abstract: A 2-dimensional beam scan unit reflects emission beams from a red laser light source, a green laser light source and a blue laser light source and scans in a 2-dimensional direction. Diffusion plates diffuse the respective light beams scanned in the 2-dimensional direction to introduce them to corresponding spatial light modulation elements. The respective spatial light modulation elements modulate the respective lights in accordance with video signals of the respective colors. A dichroic prism multiplexes the lights of the three colors after the modulation and introduces the multiplexed lights to a projection lens so that a color image is displayed on a screen. Since the 2-dimensional light emitted from the beam scan unit is diffused to illuminate the spatial light modulation element, it is possible to change the optical axis of the beam emerging from the light diffusion member for irradiating the spatial light modulation element moment by moment, thereby effectively suppressing speckle noise.Type: GrantFiled: June 15, 2006Date of Patent: September 13, 2011Assignee: Panasonic CorporationInventors: Kenichi Kasazumi, Yasuo Kitaoka, Kiminori Mizuuchi, Kazuhisa Yamamoto
-
Patent number: 7948469Abstract: An image display device and an image display system which can establish visible light communication without interfering with an image displayed at a predetermined frame rate are provided. A controller controls a spatial light modulator in accordance with an image signal to display the image, and also modulates an intensity of a visible light output from a backlight with a frequency higher than the frame rate of the image signal to have the visible light output from the backlight carry additional information. A light receiver receives the visible light and demodulates to extract the additional information. An additional information generator outputs the additional information.Type: GrantFiled: October 5, 2010Date of Patent: May 24, 2011Assignee: Panasonic CorporationInventors: Yasuo Kitaoka, Kazuhisa Yamamoto, Hiromu Kitaura, Ken ichi Kasazumi