Patents by Inventor Yasuo Kitaoka

Yasuo Kitaoka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7494286
    Abstract: Efficient coupling structures are important for the realization of reliable and economical integrated optical circuit applications. This paper presents a new approach for the simulation of an anisotropic plasma etching process in silicon based on a string point model as well as the realization and the results of etching processes in silicon, silicon dioxide, silicon oxinitride and silicon nitride which are fundamental for the fabrication of coupling structures. The connections to active and passive components were fabricated using plasma etching and deposition processes which are compatible with C-MOS or BIC-MOS technology. The realized waveguide-detector structures with vertical and horizontal silicon PIN-diodes exhibit efficiencies close to 90% for wavelength below 1.1 micrometers. The diodes can detect signals of modulation frequencies of more than 400 MHz due to horizontal light injection and capacitances less than 1 pF.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: February 24, 2009
    Assignee: Panasonic Corporation
    Inventors: Akihiro Morikawa, Toshifumi Yokoyama, Yasuo Kitaoka, Kazuhisa Yamamoto
  • Publication number: 20090002265
    Abstract: An image display device and an image display system which can establish visible light communication without interfering with an image displayed at a predetermined frame rate are provided. A controller 12 controls a spatial light modulator in accordance with an image signal to display the image, and also modulates an intensity of a visible light output from a backlight 13 with a frequency higher than the frame rate of the image signal to have the visible light output from the backlight 13 carry additional information. A light receiver 15 receives the visible light and demodulates to extract the additional information. An additional information generator 16 outputs the additional information.
    Type: Application
    Filed: July 27, 2005
    Publication date: January 1, 2009
    Inventors: Yasuo Kitaoka, Kazuhisa Yamamoto, Hiromu Kitaura, Ken ichi Kasazumi
  • Publication number: 20080315231
    Abstract: A light source of the present invention includes: a semiconductor light emitting device which has a light emitting face and emits light from part of the light emitting face; a container which has a light transmitting window for transmitting the light and accommodates the semiconductor light emitting device; and a gettering portion for performing gettering of a material containing at least one of carbon and silicon. The gettering portion is positioned, in the container, in a region other than the part of the light emitting face of the semiconductor light emitting device.
    Type: Application
    Filed: June 12, 2008
    Publication date: December 25, 2008
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO. LTD.
    Inventors: Isao Kidoguchi, Yasuo Kitaoka, Hiroyoshi Yajima, Keiji Ito, Akihiko Ishibashi, Yoshiaki Hasegawa, Kiminori Mizuuchi
  • Patent number: 7459697
    Abstract: A measuring substance (2) is excited by light emitted from a light source (1), fluorescence generated from the substance (2) is directed to transmission-type band-pass filters (4, 6, 8) sequentially, and light having a specific wavelength that has passed through the band-pass filters (4, 6, 8) is detected by light-receiving portions (5, 7, 9). Differences or relative ratios between the signal strengths detected by the respective light-receiving portions (5, 7, 9) are measured to determine a peak wavelength of the fluorescence spectrum, thus identifying the substance (2). With this configuration, a fluorometer can achieve a small size, low cost, and short-time detection.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: December 2, 2008
    Assignee: Panasonic Corporation
    Inventors: Yasuo Kitaoka, Kazuhisa Yamamoto
  • Patent number: 7435295
    Abstract: The present invention provides a method for producing a compound single crystal that can improve a growth rate and grow a large single crystal with high crystal uniformity in a short time, and a production apparatus used for the method. The compound single crystal is grown while stirring a material solution to create a flow from a gas-liquid interface in contact with a source gas toward the inside of the material solution. With this stirring, the source gas can be dissolved easily in the material solution, and supersaturation can be achieved in a short time, thus improving the growth rate of the compound single crystal. Moreover, the flow formed by the stirring goes from the gas-liquid interface where a source gas concentration is high to the inside of the material solution where the source gas concentration is low, so that dissolution of the source gas becomes uniform.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: October 14, 2008
    Assignees: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yasuo Kitaoka, Hisashi Minemoto, Isao Kidoguchi, Yasuhito Takahashi, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura
  • Patent number: 7427522
    Abstract: In a short-wavelength laser module, long-term reliability is lost because of unnecessary gas deposited on the end face of its optical waveguide. A short-wavelength laser module has a package structure wherein a package lid used when the short-wavelength laser module is hermetically sealed does not make contact with internal gas, and a process of accelerating the polymerization of a securing agent used inside the package is incorporated, whereby unnecessary gas from the securing agent is eliminated and the long-term reliability of the output is attained.
    Type: Grant
    Filed: November 18, 2004
    Date of Patent: September 23, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Akihiro Morikawa, Yasuo Kitaoka, Kazuhisa Yamamoto, Shinichi Takigawa
  • Publication number: 20080213158
    Abstract: A manufacturing apparatus of Group III nitride crystals and a method for manufacturing Group III nitride crystals are provided, by which high quality crystals can be manufactured. For instance, crystals are grown using the apparatus of the present invention as follows. A crystal raw material (131) and gas containing nitrogen are introduced into a reactor vessel (120), to which heat is applied by a heater (110), and crystals are grown in an atmosphere of pressure applied thereto. The gas is introduced from a gas supplying device (180) to the reactor vessel (120) through a gas inlet of the reactor vessel, and then is exhausted to the inside of a pressure-resistant vessel (102) through a gas outlet of the reactor vessel. Since the gas is introduced directly to the reactor vessel (120) without passing through the pressure-resistant vessel (102), the mixture of impurities attached to the pressure-resistant vessel (102) and the like into the site of the crystal growth can be prevented.
    Type: Application
    Filed: April 14, 2008
    Publication date: September 4, 2008
    Applicants: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hisashi Minemoto, Yasuo Kitaoka, Isao Kidoguchi, Yusuke Mori, Fumio Kawamura, Takatomo Sasaki, Hidekazu Umeda, Yasuhito Takahashi
  • Patent number: 7419545
    Abstract: The present invention provides a producing method with which large silicon carbide (SiC) single crystal can be produced at low cost. Silicon carbide single crystal is produced or grown by dissolving and reacting silicon (Si) and carbon (C) in an alkali metal flux. The alkali metal preferably is lithium (Li). With this method, silicon carbide single crystal can be produced even under low-temperature conditions of 1500° C. or lower, for example. The photograph of FIG. 3B is an example of a silicon carbide single crystal obtained by the method of the present invention.
    Type: Grant
    Filed: December 26, 2005
    Date of Patent: September 2, 2008
    Assignees: Matsushita Electric Industrial Co., Ltd., Osaka University
    Inventors: Yasuo Kitaoka, Yusuke Mori, Takatomo Sasaki, Fumio Kawamura, Minoru Kawahara
  • Patent number: 7416306
    Abstract: A reflection-type laser projector (100) projects modulated laser beams outputted from a laser projection unit (40), on a screen, wherein a reflector (112) as a constituent of the screen (110) has reflection characteristics of reflecting, among the incident light, only laser beams of three colors of red, blue, and green, which are projected from the laser projection unit (40) and light in the neighboring wavelength band, and transmitting light in other wavelength bands, thereby preventing pictures on the screen (110) from becoming hard to be seen due to effects of indoor illumination or light from outdoors.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: August 26, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kazuhisa Yamamoto, Kiminori Mizuuchi, Yasuo Kitaoka, Ken'ichi Kasazumi
  • Patent number: 7407421
    Abstract: A light source of the present invention includes: a semiconductor light emitting device which has a light emitting face and emits light from part of the light emitting face; a container which has a light transmitting window for transmitting the light and accommodates the semiconductor light emitting device; and a gettering portion for performing gettering of a material containing at least one of carbon and silicon. The gettering portion is positioned, in the container, in a region other than the part of the light emitting face of the semiconductor light emitting device.
    Type: Grant
    Filed: November 19, 2004
    Date of Patent: August 5, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Isao Kidoguchi, Yasuo Kitaoka, Hiroyoshi Yajima, Keiji Ito, Akihiko Ishibashi, Yoshiaki Hasegawa, Kiminori Mizuuchi
  • Patent number: 7381268
    Abstract: A manufacturing apparatus of Group III nitride crystals and a method for manufacturing Group III nitride crystals are provided, by which high quality crystals can be manufactured. For instance, crystals are grown using the apparatus of the present invention as follows. A crystal raw material (131) and gas containing nitrogen are introduced into a reactor vessel (120), to which heat is applied by a heater (110), and crystals are grown in an atmosphere of pressure applied thereto. The gas is introduced from a gas supplying device (180) to the reactor vessel (120) through a gas inlet of the reactor vessel, and then is exhausted to the inside of a pressure-resistant vessel (102) through a gas outlet of the reactor vessel. Since the gas is introduced directly to the reactor vessel (120) without passing through the pressure-resistant vessel (102), the mixture of impurities attached to the pressure-resistant vessel (102) and the like into the site of the crystal growth can be prevented.
    Type: Grant
    Filed: April 27, 2005
    Date of Patent: June 3, 2008
    Assignees: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hisashi Minemoto, Yasuo Kitaoka, Isao Kidoguchi, Yusuke Mori, Fumio Kawamura, Takatomo Sasaki, Hidekazu Umeda, Yasuhito Takahashi
  • Patent number: 7382811
    Abstract: After forming domain inverted layers 3 in an LiTaO3 substrate 1, an optical waveguide is formed. By performing low-temperature annealing for the optical wavelength conversion element thus formed, a stable proton exchange layer 8 is formed, where an increase in refractive index generated during high-temperature annealing is lowered, thereby providing a stable optical wavelength conversion element. Thus, the phase-matched wavelength becomes constant, and variation in harmonic wave output is eliminated. Consequently, with respect to an optical wavelength conversion element utilizing a non-linear optical effect, a highly reliable element is provided.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: June 3, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kazuhisa Yamamoto, Kiminori Mizuuchi, Yasuo Kitaoka, Makoto Kato
  • Publication number: 20080123700
    Abstract: After forming domain inverted layers 3 in an LiTaO3 substrate 1, an optical waveguide is formed. By performing low-temperature annealing for the optical wavelength conversion element thus formed, a stable proton exchange layer 8 is formed, where an increase in refractive index generated during high-temperature annealing is lowered, thereby providing a stable optical wavelength conversion element. Thus, the phase-matched wavelength becomes constant, and variation in harmonic wave output is eliminated. Consequently, with respect to an optical wavelength conversion element utilizing a non-linear optical effect, a highly reliable element is provided.
    Type: Application
    Filed: January 23, 2008
    Publication date: May 29, 2008
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kazuhisa YAMAMOTO, Kiminori MIZUUCHI, Yasuo KITAOKA, Makoto KATO
  • Publication number: 20080107140
    Abstract: After forming domain inverted layers 3 in an LiTaO.sub.3 substrate 1, an optical waveguide is formed. By performing low-temperature annealing for the optical wavelength conversion element thus formed, a stable proton exchange layer 8 is formed, where an increase in refractive index generated during high-temperature annealing is lowered, thereby providing a stable optical wavelength conversion element. Thus, the phase-matched wavelength becomes constant, and variation in harmonic wave output is eliminated. Consequently, with respect to an optical wavelength conversion element utilizing a non-linear optical effect, a highly reliable element is provided.
    Type: Application
    Filed: December 27, 2007
    Publication date: May 8, 2008
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kazuhisa Yamamoto, Kiminori Mizuuchi, Yasuo Kitaoka, Makoto Kato
  • Patent number: 7361220
    Abstract: The present invention provides a method of manufacturing a gallium nitride single crystal that can suppress the decomposition of gallium nitride and improve production efficiency in a sublimation method. According to the manufacturing method, a material (GaN powder) for the gallium nitride (GaN) single crystal is placed inside a crucible, sublimed or evaporated by heating, and cooled on a substrate surface to return to a solid again, so that the gallium nitride single crystal is grown on the substrate surface. The growth of the single crystal is performed under pressure. The pressure is preferably not less than 5 atm (5×1.013×105 Pa). The single crystal is grown preferably in a mixed gas atmosphere containing NH3 and N2.
    Type: Grant
    Filed: March 25, 2004
    Date of Patent: April 22, 2008
    Assignees: Matsushita Electric Industrial Co., Ltd.
    Inventors: Takatomo Sasaki, Yusuke Mori, Fumio Kawamura, Masashi Yoshimura, Yasunori Kai, Mamoru Imade, Yasuo Kitaoka, Hisashi Minemoto, Isao Kidoguchi
  • Patent number: 7339960
    Abstract: After forming domain inverted layers 3 in an LiTaO3 substrate 1, an optical waveguide is formed. By performing low-temperature annealing for the optical wavelength conversion element thus formed, a stable proton exchange layer 8 is formed, where an increase in refractive index generated during high-temperature annealing is lowered, thereby providing a stable optical wavelength conversion element. Thus, the phase-matched wavelength becomes constant, and variation in harmonic wave output is eliminated. Consequently, with respect to an optical wavelength conversion element utilizing a non-linear optical effect, a highly reliable element is provided.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: March 4, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kazuhisa Yamamoto, Kiminori Mizuuchi, Yasuo Kitaoka, Makoto Kato
  • Publication number: 20080035912
    Abstract: A field-effect transistor includes a semiconductor layer (14), a source electrode (15) and a drain electrode (16) electrically connected to the semiconductor layer (14), and a gate electrode (12) for applying an electric field to the semiconductor layer (14) between the source electrode (15) and the drain electrode (16). The semiconductor layer (14) contains an organic semiconductor material and a plurality of thin wires made of an inorganic semiconductor.
    Type: Application
    Filed: August 30, 2005
    Publication date: February 14, 2008
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Takayuki Takeuchi, Takahiro Kawashima, Tohru Saitoh, Tomohiro Okuzawa, Yasuo Kitaoka
  • Publication number: 20080037100
    Abstract: The present invention provides an acoustooptic device usable even with light in the ultraviolet region, free from laser damage and optical damage, and excellent in acoustooptic performance and an optical imaging apparatus using the same. The acoustooptic device according to the present invention includes a high-frequency signal input part (65), a transducer part (64), and an acoustooptic medium (6). A high-frequency signal input from the high-frequency signal input part (65) is converted into a mechanical vibration by the transducer part (64), and an optical characteristic of the acoustooptic medium (6) varies depending on the mechanical vibration. The acoustooptic medium is formed of a Group III nitride crystal. The optical imaging apparatus according to the present invention includes a light source, an acoustooptic device, a driving circuit, and an image plane.
    Type: Application
    Filed: June 29, 2005
    Publication date: February 14, 2008
    Applicant: Matsushita Electric Industrial Co., LTD.
    Inventors: Hisashi Minemoto, Yasuo Kitaoka, Isao Kidoguchi, Takayuki Negami, Yasuhito Takahashi, Toshimi Nishiyama, Kimihiko Shibuya
  • Patent number: 7309534
    Abstract: The present invention provides a method of manufacturing Group III nitride crystals that are of high quality, are manufactured highly efficiently, and are useful and usable as a substrate that is used in semiconductor manufacturing processes.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: December 18, 2007
    Assignees: Matsushita Electric INdustrial Co., Ltd.
    Inventors: Yasuo Kitaoka, Hisashi Minemoto, Isao Kidoguchi, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura, Masanori Morishita
  • Publication number: 20070272941
    Abstract: A method for producing Group-III-element nitride crystals by which an improved growth rate is obtained and large high-quality crystals can be grown in a short time, a producing apparatus used therein, and a semiconductor element obtained using the method and the apparatus are provided. The method is a method for producing Group-III-element nitride crystals that includes a crystal growth process of subjecting a material solution containing a Group III element, nitrogen, and at least one of alkali metal and alkaline-earth metal to pressurizing and heating under an atmosphere of a nitrogen-containing gas so that the nitrogen and the Group III element in the material solution react with each other to grow crystals.
    Type: Application
    Filed: March 31, 2005
    Publication date: November 29, 2007
    Applicants: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Hisashi Minemoto, Yasuo Kitaoka, Isao Kidoguchi, Yusuke Mori, Fumio Kawamura, Takatomo Sasaki, Yasuhito Takahashi