Patents by Inventor Yasuo Ohta

Yasuo Ohta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10283774
    Abstract: A bipolar electrode is composed of a first active material layer which is, for example, a positive electrode active material layer formed to include a first active material on one side of a collector, and a second active material layer which is, for example, a negative electrode active material layer formed to include a second active material with less compressive strength than that of the first active material on the other side of the collector. Then, a density adjusting additive which is an additive material with larger compressive strength than that of the second active material is included in the second active material layer.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: May 7, 2019
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Masanobu Sato, Yasuo Ohta, Hideaki Horie, Masanori Aoyagi
  • Patent number: 9666858
    Abstract: A negative electrode for a secondary battery according to the present invention has a collector and a negative electrode active material layer formed on a surface of the collector and containing negative electrode active material particles. In the negative electrode active material layer, an insulating material is arranged between the negative electrode active material particles so as not to develop conductivity by a percolation path throughout the negative electrode active material layer. It is possible in this configuration to effectively prevent the occurrence of a short-circuit current due to an internal short circuit and the generation of heat due to such short-circuit current flow in the secondary battery while securing the battery performance of the secondary battery.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: May 30, 2017
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Kenji Ohara, Sohei Suga, Yasuo Ohta, Tomoya Kubota, Kazuyuki Sakamoto, Takaaki Abe, Satoru Ichikawa, Kenji Hosaka, Kosuke Hagiyama, Hiroshi Miyakubo
  • Patent number: 9394638
    Abstract: A non-woven fabric which is excellent in thermal resistance, mechanical strength, and thermal dimensional stability for applications exposed to high temperature circumstance and has an extremely large surface area and exhibit an excellent filter performance is obtained. The non-woven fabric is composed of polyimide fibers which are obtained by polycondensation of at least an aromatic tetracarboxylic acid and an aromatic diamine having a benzoxazole structure and have a fiber diameter in the range of 0.001 ?m to 1 ?m. The non-woven fabric is obtained by the steps of preparing a polyamic acid by polycondensation of an aromatic tetracarboxylic acid and an aromatic diamine having a benzoxazole structure, and electro-spinning the polyamic acid to form a polyimide precursor non-woven fabric; and imidizing a polyimide precursor fiber bundle.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: July 19, 2016
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Masahiko Nakamori, Satoshi Maeda, Tooru Kitagawa, Hisato Kobayashi, Yasuo Ohta
  • Patent number: 9322106
    Abstract: An additive obtained from the reaction product obtained by reacting glutaraldehyde and at least one type of compound selected from hydrocarbon compounds containing a hydroxyl group, and at least one type of compound selected from amine compounds, as well as a tin or tin alloy plating solution containing this additive.
    Type: Grant
    Filed: May 18, 2013
    Date of Patent: April 26, 2016
    Inventors: Motoya Shimazu, Yasuo Ohta
  • Patent number: 9023534
    Abstract: The present invention provides a fiber having a nano-order fiber diameter, which is produced by without a process of dehydration and cyclization by a heat treatment after fiber spinning and has excellent heat resistance and mechanical strength, and a non-woven fabric composed of the fiber, and discloses the polyamide-imide fiber and the non-woven fabric having an average fiber diameter of from 0.001 ?m to 1 ?m and also discloses the process for producing threrof. The present invention also provides a separator for an electronic component which has a high conductivity and a small separator thickness and is improved in safety during reflow soldering or short-circuiting, and discloses the separator composed of a non-woven fabric obtained by an electro-spinning method.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: May 5, 2015
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Masahiko Nakamori, Yasuo Ohta, Hisato Kobayashi, Syoji Oda, Nobuyuki Taniguchi, Daisuke Sakura, Katsuya Shimeno
  • Patent number: 8715861
    Abstract: A bipolar secondary battery is provided with an electric power generating unit, a pair of terminal plates. The electric power generating unit includes a plurality of bipolar electrodes stacked on one another with an electrolyte layer disposed between the bipolar electrodes and separating the bipolar electrodes. Each of the bipolar electrodes includes a collector with a positive electrode active material layer formed on a first side surface of the collector, and a negative electrode active material layer formed on a second side surface of the collector. The first terminal plate is connected to a first stacking direction facing end of the electric power generating unit. The second terminal plate is connected to a second stacking direction facing end of the electric power generating unit. At least one of the terminal plates includes an electric current suppressing device that suppresses an electric current occurring when an internal short circuit occurs in the electric power generating unit.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: May 6, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Sohei Suga, Masanori Aoyagi, Kenji Ohara, Yasuo Ohta, Junji Katamura, Motoharu Obika, Kenji Hosaka, Hideaki Horie, Shigeo Watanabe
  • Publication number: 20130270122
    Abstract: An additive obtained from the reaction product obtained by reacting glutaraldehyde and at least one type of compound selected from hydrocarbon compounds containing a hydroxyl group, and at least one type of compound selected from amine compounds, as well as a tin or tin alloy plating solution containing this additive.
    Type: Application
    Filed: May 18, 2013
    Publication date: October 17, 2013
    Inventors: Motoya SHIMAZU, Yasuo OHTA
  • Patent number: 8466314
    Abstract: An additive obtained from the reaction product obtained by reacting glutaraldehyde and at least one type of compound selected from hydrocarbon compounds containing a hydroxyl group, and at least one type of compound selected from amine compounds, as well as a tin or tin alloy plating solution containing this additive.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: June 18, 2013
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Motoya Shimazu, Yasuo Ohta
  • Publication number: 20130122362
    Abstract: A bipolar electrode is composed of a first active material layer which is, for example, a positive electrode active material layer formed to include a first active material on one side of a collector, and a second active material layer which is, for example, a negative electrode active material layer formed to include a second active material with less compressive strength than that of the first active material on the other side of the collector. Then, a density adjusting additive which is an additive material with larger compressive strength than that of the second active material is included in the second active material layer.
    Type: Application
    Filed: July 21, 2011
    Publication date: May 16, 2013
    Inventors: Masanobu Sato, Yasuo Ohta, Hideaki Horie, Masanori Aoyagi
  • Publication number: 20130071741
    Abstract: A negative electrode for a secondary battery according to the present invention has a collector and a negative electrode active material layer formed on a surface of the collector and containing negative electrode active material particles. In the negative electrode active material layer, an insulating material is arranged between the negative electrode active material particles so as not to develop conductivity by a percolation path throughout the negative electrode active material layer. It is possible in this configuration to effectively prevent the occurrence of a short-circuit current due to an internal short circuit and the generation of heat due to such short-circuit current flow in the secondary battery while securing the battery performance of the secondary battery.
    Type: Application
    Filed: May 25, 2011
    Publication date: March 21, 2013
    Inventors: Kenji Ohara, Sohei Suga, Yasuo Ohta, Tomoya Kubota, Kazuyuki Sakamoto, Takaaki Abe, Satoru Ichikawa, Kenji Hosaka, Kosuke Hagiyama, Hiroshi Miyakubo
  • Publication number: 20110259754
    Abstract: An additive obtained from the reaction product obtained by reacting glutaraldehyde and at least one type of compound selected from hydrocarbon compounds containing a hydroxyl group, and at least one type of compound selected from amine compounds, as well as a tin or tin alloy plating solution containing this additive.
    Type: Application
    Filed: April 26, 2011
    Publication date: October 27, 2011
    Applicant: Rohm and Haas Electronic Materials LLC
    Inventors: Motoya SHIMAZU, Yasuo Ohta
  • Publication number: 20110183166
    Abstract: A bipolar secondary battery is provided with an electric power generating unit, a pair of terminal plates. The electric power generating unit includes a plurality of bipolar electrodes stacked on one another with an electrolyte layer disposed between the bipolar electrodes and separating the bipolar electrodes. Each of the bipolar electrodes includes a collector with a positive electrode active material layer formed on a first side surface of the collector, and a negative electrode active material layer formed on a second side surface of the collector. The first terminal plate is connected to a first stacking direction facing end of the electric power generating unit. The second terminal plate is connected to a second stacking direction facing end of the electric power generating unit. At least one of the terminal plates includes an electric current suppressing device that suppresses an electric current occurring when an internal short circuit occurs in the electric power generating unit.
    Type: Application
    Filed: October 19, 2009
    Publication date: July 28, 2011
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Sohei Suga, Masanori Aoyagi, Kenji Ohara, Yasuo Ohta, Junji Katamura, Motoharu Obika, Kenji Hosaka, Hideaki Horie, Shigeo WAatanabe
  • Publication number: 20110098406
    Abstract: The present invention provides a method for producing a high strength polyethylene fiber superior in stretchability and having a higher strength, a higher elastic modulus and high productivity, and a high strength polyethylene fiber produced by the method. The method includes (1) dispersing a chemically surface modified carbon nanofiber in a solvent for an ultrahigh molecular weight polyethylene, (2) preparing a mixed dope comprising the polyethylene, the modified carbon nanofiber and the solvent by mixing the polyethylene with the suspension obtained in (1), wherein the concentration of the polyethylene is not less than 0.5 wt % and less than 50 wt %, and (3) extruding the dope obtained in step (2) through a spinneret, cooling the dope, and then stretching the dope into a filament yarn at a deformation rate of not less than 0.005 s?1 and not more than 0.5 s?1.
    Type: Application
    Filed: July 8, 2009
    Publication date: April 28, 2011
    Applicant: Toyo Boseki Kabushiki Kaisha
    Inventors: Nobuyuki Taniguchi, Yasuo Ohta, Benjamin Chu, Benjamin S. Hsiao
  • Patent number: 7931793
    Abstract: An additive obtained from the reaction product obtained by reacting glutaraldehyde and at least one type of compound selected from hydrocarbon compounds containing a hydroxyl group, and at least one type of compound selected from amine compounds, as well as a tin or tin alloy plating solution containing this additive.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: April 26, 2011
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Motoya Shimazu, Yasuo Ohta
  • Patent number: 7811673
    Abstract: To provide a novel high strength polyethylene multifilament which consists of a plurality of filaments having high strengths and uniform internal structures, and showing a narrow variation in the strengths of the monofilaments, and which has been difficult to be provided by the conventional gel spinning method. A high strength polyethylene multifilament consisting of a plurality of filaments which are characterized in that the crystal size of monoclinic crystal is 9 nm or less; the stress Raman shift factor is ?5.0 cm?1/(cN/dTex) or more; the average strength is 20 CN/dTex or higher; the knot strength retention of each monofilament is 40% or higher; CV indicating a variation in the strengths of the monofilaments is 25% or lower; the elongation at break is from 2.5% inclusive to 6.0% inclusive; the fineness of each filament is 10 dTex or less; and the melting point of the filaments is 145° C. or higher.
    Type: Grant
    Filed: March 12, 2004
    Date of Patent: October 12, 2010
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Godo Sakamoto, Tooru Kitagawa, Yasuo Ohta, Yasunori Fukushima, Hiroki Murase
  • Publication number: 20100178830
    Abstract: A non-woven fabric which is excellent in thermal resistance, mechanical strength, and thermal dimensional stability for applications exposed to high temperature circumstance and has an extremely large surface area and exhibit an excellent filter performance is obtained. The non-woven fabric is composed of polyimide fibers which are obtained by polycondensation of at least an aromatic tetracarboxylic acid and an aromatic diamine having a benzoxazole structure and have a fiber diameter in the range of 0.001 ?m to 1 ?m. The non-woven fabric is obtained by the steps of preparing a polyamic acid by polycondensation of an aromatic tetracarboxylic acid and an aromatic diamine having a benzoxazole structure, and electro-spinning the polyamic acid to form a polyimide precursor non-woven fabric; and imidizing a polyimide precursor fiber bundle.
    Type: Application
    Filed: June 19, 2007
    Publication date: July 15, 2010
    Applicant: Toyo Boseki Kabushiki Kaisha
    Inventors: Masahiko Nakamori, Satoshi Maeda, Tooru Kitagawa, Hisato Kobayashi, Yasuo Ohta
  • Publication number: 20100151333
    Abstract: The present invention provides a fiber having a nano-order fiber diameter, which is produced by without a process of dehydration and cyclization by a heat treatment after fiber spinning and has excellent heat resistance and mechanical strength, and a non-woven fabric composed of the fiber, and discloses the polyamide-imide fiber and the non-woven fabric having an average fiber diameter of from 0.001 ?m to 1 ?m and also discloses the process for producing threrof. The present invention also provides a separator for an electronic component which has a high conductivity and a small separator thickness and is improved in safety during reflow soldering or short-circuiting, and discloses the separator composed of a non-woven fabric obtained by an electro-spinning method.
    Type: Application
    Filed: July 27, 2006
    Publication date: June 17, 2010
    Inventors: Masahiko Nakamori, Yasuo Ohta, Hisato Kobayashi, Syoji Oda, Nobuyuki Taniguchi, Daisuke Sakura, Katsuya Shimeno
  • Publication number: 20100010186
    Abstract: The present invention provides a high strength polyethylene fiber having an intrinsic viscosity of from about 5 dL/g to 40 dL/g, and containing carbon nanofiber modified with alkyl chains. The fiber obtained by the production method of a high strength polyethylene fiber of the present invention is industrially applicable to a wide range and greatly contributes to the industry.
    Type: Application
    Filed: July 8, 2008
    Publication date: January 14, 2010
    Applicants: TOYO BOSEKI KABUSHIKI KAISHA, THE RESEARCH FOUNDATION OF STATE UNIVERSITY OF NEW YORK
    Inventors: Nobuyuki Taniguchi, Yasuo Ohta, Benjamin Chu, Benjamin S. Hsiao
  • Publication number: 20100000873
    Abstract: A plating solution and a plating method, which does not use a complexing agent and which provides favorable solder wetting properties and an extremely low coupling rate when electrolytic tin plating is performed, and particularly when electrolytic tin plating is performed using a barrel plating method.
    Type: Application
    Filed: June 11, 2009
    Publication date: January 7, 2010
    Applicant: Rohm and Haas Electronic Materials LLC
    Inventors: Masaaki Imanari, Fai Lung Ting, Motoya Shimazu, Yasuo Ohta
  • Publication number: 20090235520
    Abstract: A non-aqueous electrolyte secondary cell including: a cathode containing a compound expressed by a general formula AxMyPO4 (wherein A represents an alkali metal and M represents a transition element, which are contained in ranges: 0<x?2 and 1<y?2); an anode containing sintered carbon material prepared by sintering a carbon material capable of doping/dedoping lithium; and a non-aqueous electrolyte solution. This non-aqueous electrolyte secondary cell can exhibit a high temperature storage characteristic and a high capacity.
    Type: Application
    Filed: March 19, 2009
    Publication date: September 24, 2009
    Inventors: Yoshinori Atsumi, Masahiro Yamamoto, Yasuo Ohta