Patents by Inventor Yaw Wen Hu

Yaw Wen Hu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150076666
    Abstract: A semiconductor having through-silicon via includes a substrate, an outer dielectric liner, an inner dielectric liner and a conductive contacting layer. The substrate has a top surface and a bottom surface and defining at least one through-silicon via going through the top surface toward the bottom surface. The outer dielectric liner covers the top surface of the substrate. The inner dielectric liner covers a wall of the through-silicon via. The thickness of the inner dielectric liner reduces from the top surface toward the bottom surface. The conductive contacting liner over fills the through-silicon via and is exposed on the top surface.
    Type: Application
    Filed: December 16, 2013
    Publication date: March 19, 2015
    Applicant: INOTERA MEMORIES, INC.
    Inventors: HSU CHIANG, YAW-WEN HU, TZUNG-HAN LEE, CHUNG-YUAN LEE
  • Publication number: 20140308807
    Abstract: A method for fabricating a semiconductor memory includes the following steps. Active areas are defined in a substrate. An oxide layer is then formed on the active areas. The oxide layer is subjected to a surface treatment. A first polysilicon layer, a buffer layer and a hard mask are deposited. Recessed access devices are formed in an array region of the substrate. After the recessed access devices are formed, the hard mask and the buffer layer are removed to thereby form transistors in a peripheral region. A second polysilicon layer is deposited on the first polysilicon layer. The first and second polysilicon layers are then etched into a gate structure.
    Type: Application
    Filed: April 10, 2014
    Publication date: October 16, 2014
    Applicant: INOTERA MEMORIES, INC.
    Inventors: Yaw-Wen Hu, Ron Fu Chu, Tzung-Han Lee
  • Publication number: 20140291738
    Abstract: A semiconductor electronic device structure includes an active area array disposed in a substrate, an isolation structure, a plurality of recessed gate structures, a plurality of word lines, and a plurality of bit lines. The active area array a plurality of active area columns and a plurality of active area rows, defining an array of active areas. The substrate has two recesses formed at the central region thereof. Each recessed gate structure is respectively disposed in the recess. A protruding structure is formed on the substrate in each recess. A STI structure of the isolation structure is arranged between each pair of adjacent active area rows. Word lines are disposed in the substrate, each electrically connecting the gate structures there-under. Bit lines are disposed above the active areas, forming a crossing pattern with the word lines.
    Type: Application
    Filed: September 12, 2013
    Publication date: October 2, 2014
    Applicant: INOTERA MEMORIES, INC.
    Inventors: TZUNG-HAN LEE, YAW-WEN HU, HUNG CHANG LIAO, CHUNG-YUAN LEE, HSU CHIANG, SHENG-HSIUNG WU
  • Publication number: 20140291729
    Abstract: A memory unit includes a substrate, at least one charge storage element, at least one first recessed access element, and an isolation portion. The substrate has a surface and the first recessed access element is disposed in an active area of the substrate and extending from the surface into the substrate. The first recessed access element is electrically connected to the charge storage element and induces in the substrate a first depletion region. The isolation portion is adjacent to the active area and extending from the surface into the substrate. The isolation portion includes a trenched isolating barrier and a second recessed access element. The second recessed access element is disposed in the trenched isolating barrier and induces in the substrate a second depletion region merging with the first depletion region.
    Type: Application
    Filed: June 19, 2013
    Publication date: October 2, 2014
    Inventors: TZUNG-HAN LEE, YAW-WEN HU, CHUNG-YUAN LEE, HSU CHIANG, SHENG-HSIUNG WU, HUNG CHANG LIAO
  • Publication number: 20140291754
    Abstract: A semiconductor structure having buried word line formed in a trench in a semiconductor substrate includes a gate oxide layer, a gate conductor, a gate cap layer, a blocking layer, and an isolation structure. The gate oxide layer is formed on the inner surface of the trench, the gate conductor is formed in the trench, and the gate cap layer is formed on the gate conductor. The blocking layer surrounds a bottom portion of the gate conductor, and the bottom portion of the gate conductor is isolated from the gate oxide layer by the blocking layer. The isolation structure surrounds a top portion of the gate conductor and in contact with the top end of the blocking layer. The top portion of the gate conductor is isolated from the gate oxide layer and the from the gate cap layer by the isolation structure.
    Type: Application
    Filed: June 18, 2013
    Publication date: October 2, 2014
    Inventors: TZUNG-HAN LEE, YAW-WEN HU
  • Publication number: 20140252550
    Abstract: The present invention provides a stack capacitor structure and a manufacturing method thereof, adapted for a random access memory. The stack capacitor structure is formed on a semiconductor substrate. The stack capacitor structure includes an oxide layer and a circular-shaped stopping layer. The oxide layer is disposed on the semiconductor substrate. The oxide layer has a capacitor trench therein. The circular-shaped stopping layer surrounds an edge of an opening of the capacitor trench. The disclosed stack capacitor structure and the manufacturing method thereof may thereby prevent the occurrence of the stack capacitor structure from having CD variation and belly region causing cell to cell leakage as result of manufacturing process limitation.
    Type: Application
    Filed: September 13, 2013
    Publication date: September 11, 2014
    Applicant: INOTERA MEMORIES, INC.
    Inventors: HSU CHIANG, YAW-WEN HU, TZUNG-HAN LEE, CHUNG-YUAN LEE, SHENG-HSIUNG WU
  • Patent number: 8828843
    Abstract: A method of manufacturing an isolation structure includes forming a laminate structure on a substrate. A plurality trenches is formed in the laminate structure. Subsequently a pre-processing is effected to form a hydrophilic thin film having oxygen ions on the inner wall of the trenches. Spin-on-dielectric (SOD) materials are filled into the trenches. The hydrophilic think film having oxygen ions changes the surface tension of the inner wall of the trenches and increases SOD material fluidity.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: September 9, 2014
    Assignee: Inotera Memories, Inc.
    Inventors: Yaw-Wen Hu, Jung-Chang Hsieh, Kuen-Shin Huang, Jian-Wei Chen, Ming-Tai Chien
  • Publication number: 20140220762
    Abstract: A method of manufacturing an isolation structure includes forming a laminate structure on a substrate. A plurality trenches is formed in the laminate structure. Subsequently a pre-processing is effected to form a hydrophilic thin film having oxygen ions on the inner wall of the trenches. Spin-on-dielectric (SOD) materials are filled into the trenches. The hydrophilic think film having oxygen ions changes the surface tension of the inner wall of the trenches and increases SOD material fluidity.
    Type: Application
    Filed: May 2, 2013
    Publication date: August 7, 2014
    Applicant: INOTERA MEMORIES, INC.
    Inventors: YAW-WEN HU, JUNG-CHANG HSIEH, KUEN-SHIN HUANG, JIAN-WEI CHEN, MING-TAI CHIEN
  • Publication number: 20140117442
    Abstract: A semiconductor structure includes multiple buried gates which are disposed in a substrate and have a first source and a second source, an interlayer dielectric layer covering the multiple buried gates and the substrate as well as a core dual damascene plug including a first plug, a second plug and an insulating slot. The insulating slot is disposed between the first plug and the second plug so that the first plug and the second plug are mutually electrically insulated. The first plug and the second plug respectively penetrate the interlayer dielectric layer and are respectively electrically connected to the first source and the second source.
    Type: Application
    Filed: March 15, 2013
    Publication date: May 1, 2014
    Applicant: INOTERA MEMORIES, INC.
    Inventors: Tzung-Han Lee, Yaw-Wen Hu, Hung-Chang Liao, Chung-Yuan Lee, Hsu Chiang, Sheng-Hsiung Wu
  • Patent number: 8461640
    Abstract: A non-volatile memory cell has a substrate layer with a fin shaped semiconductor member of a first conductivity type on the substrate layer. The fin shaped member has a first region of a second conductivity type and a second region of the second conductivity type, spaced apart from the first region with a channel region extending between the first region and the second region. The fin shaped member has a top surface and two side surfaces between the first region and the second region. A word line is adjacent to the first region and is capacitively coupled to the top surface and the two side surfaces of a first portion of the channel region. A floating gate is adjacent to the word line and is insulated from the top surface and is capacitively coupled to the two side surfaces of a second portion of the channel region. A coupling gate is capacitively coupled to the floating gate. An erase gate is insulated from the second region and is adjacent to the floating gate and coupling gate.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: June 11, 2013
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Yaw Wen Hu, Prateep Tuntasood
  • Patent number: 7974136
    Abstract: A flash memory cell is of the type having a substrate of a first conductivity type having a first region of a second conductivity type at a first end, and a second region of the second conductivity type at a second end, spaced apart from the first end, with a channel region between the first end and the second end. The flash memory cell has a plurality of stacked pairs of floating gates and control gates with the floating gates positioned over portions of the channel region and are insulated therefrom, and each control gate over a floating gate and insulated therefrom. The flash memory cell further has a plurality of erase gates over the channel region which are insulated therefrom, with an erase gate between each pair of stacked pair of floating gate and control gate. In a method of erasing the flash memory cell, a pulse of a first positive voltage is applied to alternating erase gates (“first alternating gates”).
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: July 5, 2011
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Geeng-Chuan Michael Chern, Ben Sheen, Jonathan Pabustan, Der-Tsyr Fan, Yaw Wen Hu, Prateep Tuntasood
  • Publication number: 20110127599
    Abstract: An improved split gate non-volatile memory cell is made in a substantially single crystalline substrate of a first conductivity type, having a first region of a second conductivity type, a second region of the second conductivity type, with a channel region between the first region and the second region in the substrate. The cell has a select gate above a portion of the channel region, a floating gate over another portion of the channel region, a control gate above the floating gate and an erase gate adjacent to the floating gate. The erase gate has an overhang extending over the floating gate. The ratio of the dimension of the overhang to the dimension of the vertical separation between the floating gate and the erase gate is between approximately 1.0 and 2.5, which improves erase efficiency.
    Type: Application
    Filed: February 8, 2011
    Publication date: June 2, 2011
    Inventors: Xian Liu, Amitay Levi, Alexander Kotov, Yuri Tkachev, Viktor Markov, James Yingbo Jia, Chien-Sheng Su, Yaw Wen Hu
  • Patent number: 7927994
    Abstract: An improved split gate non-volatile memory cell is made in a substantially single crystalline substrate of a first conductivity type, having a first region of a second conductivity type, a second region of the second conductivity type, with a channel region between the first region and the second region in the substrate. The cell has a select gate above a portion of the channel region, a floating gate over another portion of the channel region, a control gate above the floating gate and an erase gate adjacent to the floating gate. The erase gate has an overhang extending over the floating gate. The ratio of the dimension of the overhang to the dimension of the vertical separation between the floating gate and the erase gate is between approximately 1.0 and 2.5, which improves erase efficiency.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: April 19, 2011
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Xian Liu, Amitay Levi, Alexander Kotov, Yuri Tkachev, Viktor Markov, James Yingbo Jia, Chien-Sheng Su, Yaw Wen Hu
  • Publication number: 20110076816
    Abstract: An improved split gate non-volatile memory cell is made in a substantially single crystalline substrate of a first conductivity type, having a first region of a second conductivity type, a second region of the second conductivity type, with a channel region between the first region and the second region in the substrate. The cell has a select gate above a portion of the channel region, a floating gate over another portion of the channel region, a control gate above the floating gate and an erase gate adjacent to the floating gate. The erase gate has an overhang extending over the floating gate. The ratio of the dimension of the overhang to the dimension of the vertical separation between the floating gate and the erase gate is between approximately 1.0 and 2.5, which improves erase efficiency.
    Type: Application
    Filed: December 6, 2010
    Publication date: March 31, 2011
    Inventors: Xian Liu, Amitay Levi, Alexander Kotov, Yuri Tkachev, Viktor Markov, James Yingbo Jia, Chien-Sheng Su, Yaw Wen Hu
  • Publication number: 20110057247
    Abstract: A non-volatile memory cell has a substrate layer with a fin shaped semiconductor member of a first conductivity type on the substrate layer. The fin shaped member has a first region of a second conductivity type and a second region of the second conductivity type, spaced apart from the first region with a channel region extending between the first region and the second region. The fin shaped member has a top surface and two side surfaces between the first region and the second region. A word line is adjacent to the first region and is capacitively coupled to the top surface and the two side surfaces of a first portion of the channel region. A floating gate is adjacent to the word line and is insulated from the top surface and is capacitively coupled to the two side surfaces of a second portion of the channel region. A coupling gate is capacitively coupled to the floating gate. An erase gate is insulated from the second region and is adjacent to the floating gate and coupling gate.
    Type: Application
    Filed: September 8, 2009
    Publication date: March 10, 2011
    Inventors: Yaw Wen Hu, Prateep Tuntasood
  • Patent number: 7868375
    Abstract: An improved split gate non-volatile memory cell is made in a substantially single crystalline substrate of a first conductivity type, having a first region of a second conductivity type, a second region of the second conductivity type, with a channel region between the first region and the second region in the substrate. The cell has a select gate above a portion of the channel region, a floating gate over another portion of the channel region, a control gate above the floating gate and an erase gate adjacent to the floating gate. The erase gate has an overhang extending over the floating gate. The ratio of the dimension of the overhang to the dimension of the vertical separation between the floating gate and the erase gate is between approximately 1.0 and 2.5, which improves erase efficiency.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: January 11, 2011
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Xian Liu, Amitay Levi, Alexander Kotov, Yuri Tkachev, Viktor Markov, James Yingbo Jia, Chien Sheng Su, Yaw Wen Hu
  • Publication number: 20100157687
    Abstract: A flash memory cell is of the type having a substrate of a first conductivity type having a first region of a second conductivity type at a first end, and a second region of the second conductivity type at a second end, spaced apart from the first end, with a channel region between the first end and the second end. The flash memory cell has a plurality of stacked pairs of floating gates and control gates with the floating gates positioned over portions of the channel region and are insulated therefrom, and each control gate over a floating gate and insulated therefrom. The flash memory cell further has a plurality of erase gates over the channel region which are insulated therefrom, with an erase gate between each pair of stacked pair of floating gate and control gate. In a method of erasing the flash memory cell, a pulse of a first positive voltage is applied to alternating erase gates (“first alternating gates”).
    Type: Application
    Filed: December 22, 2009
    Publication date: June 24, 2010
    Applicant: Silicon Storage Technology, Inc.
    Inventors: Geeng-Chuan Michael Chern, Ben Sheen, Jonathan Pabustan, Prateep Tuntasood, Der-Tsyr Fan, Yaw Wen Hu
  • Publication number: 20100054043
    Abstract: An improved split gate non-volatile memory cell is made in a substantially single crystalline substrate of a first conductivity type, having a first region of a second conductivity type, a second region of the second conductivity type, with a channel region between the first region and the second region in the substrate. The cell has a select gate above a portion of the channel region, a floating gate over another portion of the channel region, a control gate above the floating gate and an erase gate adjacent to the floating gate. The erase gate has an overhang extending over the floating gate. The ratio of the dimension of the overhang to the dimension of the vertical separation between the floating gate and the erase gate is between approximately 1.0 and 2.5, which improves erase efficiency.
    Type: Application
    Filed: November 13, 2009
    Publication date: March 4, 2010
    Applicant: Silicon Storage Technology, Inc.
    Inventors: Xian Liu, Amitay Levi, Alexander Kotov, Yuri Tkachev, Viktor Markov, James Yingbo Jia, Chien-Sheng Su, Yaw Wen Hu
  • Patent number: 7668013
    Abstract: A flash memory cell is of the type having a substrate of a first conductivity type having a first region of a second conductivity type at a first end, and a second region of the second conductivity type at a second end, spaced apart from the first end, with a channel region between the first end and the second end. The flash memory cell has a plurality of stacked pairs of floating gates and control gates with the floating gates positioned over portions of the channel region and are insulated therefrom, and each control gate over a floating gate and insulated therefrom. The flash memory cell further has a plurality of erase gates over the channel region which are insulated therefrom, with an erase gate between each pair of stacked pair of floating gate and control gate. In a method of erasing the flash memory cell, a pulse of a first positive voltage is applied to alternating erase gates (“first alternating gates”).
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: February 23, 2010
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Geeng-Chuan Michael Chern, Ben Sheen, Jonathan Pabustan, Prateep Tuntasood, Der-Tsyr Fan, Yaw Wen Hu
  • Publication number: 20090309182
    Abstract: A first embodiment of an Electrostatic Discharge (ESD) structure for an integrated circuit for protecting the integrated circuit from an ESD signal, has a substrate of a first conductivity type. The substrate has a top surface. A first region of a second conductivity type is near the top surface and receives the ESD signal. A second region of the second conductivity type is in the substrate, separated and spaced apart from the first region in a substantially vertical direction. A third region of the first conductivity type, heavier in concentration than the substrate, is immediately adjacent to and in contact with the second region, substantially beneath the second region. In a second embodiment, a well of a second conductivity type is provided in the substrate of the first conductivity type. The well has a top surface. A first region of the second conductivity type is near the top surface. A second region of the second conductivity type is in the well, substantially along the bottom of the well.
    Type: Application
    Filed: June 16, 2008
    Publication date: December 17, 2009
    Inventors: Kung-Yen Su, Yaw Wen Hu, Bomy Chen, Kevin Gene-Wah Jew