Patents by Inventor Yehoshua Shachar

Yehoshua Shachar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110091853
    Abstract: A system is disclosed for incorporating a realistic simulated catheter or catheters within a catheter guidance and control system that operate from the same closed-loop position control feedback and geometric mapping data as the real position control system and are able to make contact with real and simulated datasets. These catheters may be operated in a pure simulation mode without interacting with real catheters and position control hardware, or may be used as control cursors to enhance the placement of catheter positioning targets. The catheter tip, which is focus of magnetic control, is realistically guided by the control system parameters, while the remainder of the catheter line is realistically constrained by the mapped chamber geometry and introducer sheath.
    Type: Application
    Filed: October 20, 2009
    Publication date: April 21, 2011
    Applicant: Magnetecs, Inc.
    Inventors: Yehoshua Shachar, Bruce Mark, David Johnson, Leslie Farkas, Steven Kim
  • Patent number: 7873401
    Abstract: A system whereby a magnetic tip attached to a surgical tool is detected, displayed and influenced positionally so as to allow diagnostic and therapeutic procedures to be performed rapidly, accurately, simply, and intuitively is described. The tools that can be so equipped include catheters, guidewires, and secondary tools such as lasers and balloons, in addition biopsy needles, endoscopy probes, and similar devices. The tip position and orientation information and the dynamic body part position information are also utilized to provide a display that allows three dimensional viewing of the magnetic tip position and orientation relative to the body part.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: January 18, 2011
    Assignee: Magnetecs, Inc.
    Inventor: Yehoshua Shachar
  • Patent number: 7873402
    Abstract: A Catheter Guidance Control and Imaging (CGCI) system whereby a magnetic tip attached to a surgical tool is detected, displayed and influenced positionally so as to allow diagnostic and therapeutic procedures to be performed is described. The tools that can be so equipped include catheters, guidewires, and secondary tools such as lasers and balloons. The magnetic tip performs two functions. First, it allows the position and orientation of the tip to be determined by using a radar system such as, for example, a radar range finder or radar imaging system. Incorporating the radar system allows the CGCI apparatus to detect accurately the position, orientation and rotation of the surgical tool embedded in a patient during surgery. In one embodiment, the image generated by the radar is displayed with the operating room imagery equipment such as, for example, X-ray, Fluoroscopy, Ultrasound, MRI, CAT-Scan, PET-Scan, etc.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: January 18, 2011
    Assignee: Magnetecs, Inc.
    Inventor: Yehoshua Shachar
  • Patent number: 7869854
    Abstract: A mapping and ablation catheter is described. In one embodiment, the catheter includes a MOSFET sensor array that provides better fidelity of the signal measurements as well as data collection and reduces the error generated by spatial distribution of the isotropic and anisotropic wavefronts. In one embodiment, the system maps the change in potential in the vicinity of an activation wavefront. In one embodiment, the mapping system tracks the spread of excitation in the heart, with properties such as propagation velocity changes. In one embodiment, during measurement, the manifold carrying the sensor array expands from a closed position state to a deployable open state. Spatial variation of the electrical potential is captured by the system's ability to occupy the same three-dimensional coordinate set for repeated measurements of the desired site. In one embodiment, an interpolation algorithm tracks the electrogram data points to produce a map relative to the electrocardiogram data.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: January 11, 2011
    Assignee: Magnetecs, Inc.
    Inventors: Yehoshua Shachar, Laszlo Farkas, Eli Gang
  • Publication number: 20100305429
    Abstract: The invention relates to a method for using tissue contact technology to optimize automated cardiac chamber mapping algorithms to both speed up the mapping process and guarantee the definition of the actual chamber limits. The invention further comprises a method for conveying tissue type information to such automatic mapping algorithms so as to allow them to adapt their point collection density within areas of particular interest. The method is enhanced by the use of a magnetic chamber that employs electromagnetic coils configured as a waveguide that radiate magnetic fields by shaping the necessary flux density axis on and around the catheter distal tip so as to push, pull and rotate the tip on demand and as defined by such automatic mapping algorithms.
    Type: Application
    Filed: February 17, 2010
    Publication date: December 2, 2010
    Applicant: MAGNETECS INC.
    Inventors: Yehoshua Shachar, Bruce Marx, Leslie Farkas, Eli Gang, Laszlo Farkas
  • Publication number: 20100305402
    Abstract: A system that uses a magnetic aperture and electromagnets to configure a magnetic shaped field is described. In one embodiment, the system can be used for guiding a catheter or other devices through a patient's body. In further modification of the system, the waveguide field and field gradient is achieved by the use of varying the electromagnetic wave and its respective flux density axis. In one embodiment, one or more magnetic pole pieces (electromagnet cores) are configured with anisotropic permeability to control the shape of the resulting magnetic field. In one embodiment, the shape and permeability distribution in an electromagnet poleface is configured to produce the desired field distribution. In one embodiment, a number of electromagnets are arranged in a spherical pattern to produce a desired magnetic field in an enclosed spherical region.
    Type: Application
    Filed: May 29, 2009
    Publication date: December 2, 2010
    Applicant: Magnetecs,Inc.
    Inventors: Yehoshua Shachar, Laszlo Farkas, Leslie Farkas
  • Publication number: 20100260679
    Abstract: A biosensor for detection of vascular endothelial growth factor (VEGF) hybridization uses an array of parallel capacitors to detect electrochemical binding of circulating VEGF to immobilized anti-VEGF monoclonal half-antibodies (a-VEGF mhAb). Binding of a-VEGF mhAb modulates the threshold voltage of a circuit, changing the impedance of the circuit. An electrode coated with a p-Si substrate enhances the affinity between the VEGF molecules. A fluid cell delivers VEGF samples onto the active surface of the chip. An array of parallel capacitors arranged in an interdigitated pattern detects the VEGF in the fluid. The detector provides an accurately measured and quantifiable rate of change of the VEGF molecules in vivo, providing real time feedback which is used to measure response of the tumor to delivered chemotherapeutic agents and biological response modifiers (BRMs) for the purpose of determining tumor burden and efficacy of the chemotherapy as part of a homeostatic loop for chemotherapy.
    Type: Application
    Filed: June 22, 2010
    Publication date: October 14, 2010
    Applicant: PHARMACO-KINESIS CORPORATION
    Inventors: Yehoshua Shachar, Winston Wu, Thomas Chen, Brett Jordan, Kyle Zimmerman, Herwin Chan, Paladin Luboff
  • Publication number: 20100262375
    Abstract: A novel architecture solid-state biosensor for label-free detection of vascular endothelial growth factor (VEGF) hybridization is presented. The new device is realized by forming a matrix array of parallel capacitors, thus allowing the realization of low-cost, portable, fully integrated devices. The detection mechanism is based on an electrochemical binding of circulating VEGF to an immobilized VEGF aptamer; whereby binding of these two compounds modulates the threshold voltage of a novel circuit, changing the impedance (capacitance) of the circuit. This novel circuit is further characterized by an electrode coded with a p-Si substrate, enhancing the affinity between the VEGF molecules and the aptamer. An apparatus forming a fluid cell is configured so as to enable the flow for delivering VEGF samples onto the active surface of the chip.
    Type: Application
    Filed: April 10, 2009
    Publication date: October 14, 2010
    Applicant: Pharmaco-Kinesis Corporation
    Inventors: Josh Yehoshua Shachar, Winston H. Wu, Leslie Farkas, Thomas Chen
  • Patent number: 7799012
    Abstract: A magnetically controlled pump is implanted into the brain of a patient and delivers a plurality of medicating agents at a controlled rate corresponding to the specific needs of the patient. The current invention comprises a flexible double walled pouch that is formed from two layers of polymer. The pouch is alternately expanded and contracting by magnetic solenoid. When contracted, a medicating agent is pushed out of the pouch through a plurality of needles. When the pouch is expanded, surrounding cerebral fluid is drawn into the space between the double walls of the pouch from which it is drawn through a catheter to an analyzer. Cerebral fluid drawn from the patient is analyzed. The operation of the apparatus and hence the treatment is remotely controlled based on these measurements and displayed through an external controller.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: September 21, 2010
    Assignee: Pharmaco-Kinesis Corporation
    Inventors: Yehoshua Shachar, Leslie Farkas, Bruce Marx, David Johnson, Laszlo Farkas, Thomas C. Chen
  • Patent number: 7799016
    Abstract: A magnetically controlled pump is implanted into the brain of a patient and delivers a plurality of medicating agents at a controlled rate corresponding to the specific needs of the patient. The current invention comprises a flexible double walled pouch that is formed from two layers of polymer. The pouch is alternately expanded and contracting by magnetic solenoid. When contracted, a medicating agent is pushed out of the pouch through a plurality of needles. When the pouch is expanded, surrounding cerebral fluid is drawn into the space between the double walls of the pouch from which it is drawn through a catheter to an analyzer. Cerebral fluid drawn from the patient is analyzed. The operation of the apparatus and hence the treatment is remotely controlled based on these measurements and displayed through an external controller.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: September 21, 2010
    Assignee: Pharmaco-Kinesis Corporation
    Inventors: Yehoshua Shachar, Thomas C. Chen, Leslie Farkas, Bruce Marx, David Johnson, Laszlo Farkas
  • Patent number: 7769427
    Abstract: A system whereby a magnetic tip attached to a surgical tool is detected, displayed and positioned. A Virtual Tip serves as an operator control. Movement of the operator control produces corresponding movement of the magnetic tip inside the patient's body. Additionally, the control provides tactile feedback to the operator's hand in the appropriate axis or axes if the magnetic tip encounters an obstacle. The output of the control combined with the magnetic tip position and orientation feedback allows a servo system to control the external magnetic field by pulse width modulating the positioning electromagnet. Data concerning the dynamic position of a moving body part such as a beating heart offsets the servo systems response in such a way that the magnetic tip, and hence the secondary tool is caused to move in unison with the moving body part.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: August 3, 2010
    Assignee: Magnetics, Inc.
    Inventor: Yehoshua Shachar
  • Publication number: 20100130854
    Abstract: A tissue-contact seeking method and apparatus is described that enhances catheter position detection and control systems in making and maintaining continuous tissue contact in a highly dynamic frame, such as under the rigors of cardiac motion. Tissue-seeking logical routines use a tissue contact sensing system to advance a catheter to relatively continuous tissue contact, or detect obstacles, in cooperation with the catheter position detection and control systems. Additional logical routines are capable of optimizing the contact direction of the catheter tip by controlling the rotation angle and chamber position of the introducer.
    Type: Application
    Filed: November 25, 2008
    Publication date: May 27, 2010
    Applicant: Magnetecs, Inc.
    Inventors: Yehoshua Shachar, Bruce Marx, Leslie Farkas, Laszlo Farkas, David Johnson, Eli Gang
  • Publication number: 20090318903
    Abstract: A magnetically controlled pump is implanted into the brain of a patient and delivers a plurality of medicating agents at a controlled rate corresponding to the specific needs of the patient. The current invention comprises a flexible double walled pouch that is formed from two layers of polymer. The pouch is alternately expanded and contracting by magnetic solenoid. When contracted, a medicating agent is pushed out of the pouch through a plurality of needles. When the pouch is expanded, surrounding cerebral fluid is drawn into the space between the double walls of the pouch from which it is drawn through a catheter to an analyzer. Cerebral fluid drawn from the patient is analyzed. The operation of the apparatus and hence the treatment is remotely controlled based on these measurements and displayed through an external controller.
    Type: Application
    Filed: July 10, 2009
    Publication date: December 24, 2009
    Applicant: Pharmaco-Kinesis Corporation
    Inventors: Yehoshua Shachar, Thomas C. Chen, Leslie Farkas, Bruce Marx, David Johnson, Laszlo Farkas
  • Publication number: 20090318902
    Abstract: A magnetically controlled pump is implanted into the brain of a patient and delivers a plurality of medicating agents at a controlled rate corresponding to the specific needs of the patient. The current invention comprises a flexible double walled pouch that is formed from two layers of polymer. The pouch is alternately expanded and contracting by magnetic solenoid. When contracted, a medicating agent is pushed out of the pouch through a plurality of needles. When the pouch is expanded, surrounding cerebral fluid is drawn into the space between the double walls of the pouch from which it is drawn through a catheter to an analyzer. Cerebral fluid drawn from the patient is analyzed. The operation of the apparatus and hence the treatment is remotely controlled based on these measurements and displayed through an external controller.
    Type: Application
    Filed: June 20, 2008
    Publication date: December 24, 2009
    Applicant: Pharmaco-Kinesis Corporation
    Inventors: Yehoshua Shachar, Thomas C. Chen, Leslie Farkas, Bruce Marx, David Johnson, Laszlo Farkas
  • Publication number: 20090275828
    Abstract: A system method that tracks one or more points on the surface of a cardiac tissue throughout a cardiac cycle and collect various types of data points which are then subsequently used to generate a corresponding model of the tissue and display the model as a 3D color coded image is described. In one embodiment, the system determines the position and orientation of a distal tip of a catheter, manipulates the catheter tip so as to maintain constant contact between the tip and a region of cardiac tissue using the impedance method, acquires positional and electrical data of the tip-tissue configuration through an entire heartbeat cycle, repeats the measurements as many times as needed in different tissue regions, and forms a 3D color coded map displaying various mechanical and electrical properties of the heart using the acquired data.
    Type: Application
    Filed: May 1, 2008
    Publication date: November 5, 2009
    Applicant: Magnetecs, Inc.
    Inventors: Yehoshua Shachar, Bruce Marx, Laszlo Farkas, David Johnson, Leslie Farkas
  • Publication number: 20090253985
    Abstract: The Lorentz-Active Sheath (LAS) serves as a conduit for other medical devices such as catheters, balloons, biopsy needles, etc. The sheath is inserted through a vein or other body orifice and is guided into the area of the patient where the operation is to be performed. The position and orientation of the LAS is tracked via an industry standard position detection system which senses electrical signals that are emitted from several electrodes coupled to the LAS. The signals received from the LAS are used to calculate an accurate and reliable assessment of the actual position of the LAS within the patient. The electrode signals also serve to create a reference frame which is then used to act as a motion compensation filter and fiducial alignment system for the movement of the LAS-hosted medical tool.
    Type: Application
    Filed: April 7, 2008
    Publication date: October 8, 2009
    Applicant: Magnetecs, Inc.
    Inventors: Yehoshua Shachar, Bruce Marx, Leslie Farkas, David Johnson, Laszlo Farkas
  • Publication number: 20090248014
    Abstract: A mapping and ablation catheter is described. In one embodiment, the catheter includes a MOSFET sensor array that provides better fidelity of the signal measurements as well as data collection and reduces the error generated by spatial distribution of the isotropic and anisotropic wavefronts. In one embodiment, the system maps the change in potential in the vicinity of an activation wavefront. In one embodiment, the mapping system tracks the spread of excitation in the heart, with properties such as propagation velocity changes. In one embodiment, during measurement, the manifold carrying the sensor array expands from a closed position state to a deployable open state. Spatial variation of the electrical potential is captured by the system's ability to occupy the same three-dimensional coordinate set for repeated measurements of the desired site. In one embodiment, an interpolation algorithm tracks the electrogram data points to produce a map relative to the electrocardiogram data.
    Type: Application
    Filed: June 8, 2009
    Publication date: October 1, 2009
    Applicant: Magnetecs, Inc.
    Inventors: Yehoshua Shachar, Laszlo Farkas, Eli Gang
  • Patent number: 7588564
    Abstract: A method and apparatus for local infusion of a variety of biological response modifiers (BRMs) and chemotherapeutic agents including tumor necrosis factors (TNF) is described. In one embodiment, the device contains a synthetic pouch compartmentalized into three or more chambers, and an electronic apparatus controlling and modulating the delivery of the agents to the site of the tumor, so as to achieve a desired regimen in support of the elimination of a tumor burden. In one embodiment, an electronic system provides tailored and controlled regulation of the administration of such agents, using sensors to monitor the progress of the treatment. Desired dosing and scheduling of anti-tumor agents in a local setting is provided. In one embodiment, active control and regulation of the administration of medicating agents is attached to a synthetic pouch and with the aid of a piezoelectric valve and pump actuating mechanism. The apparatus provides the desired dose, duration and timing of dose delivery.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: September 15, 2009
    Assignee: Pharmaco Kinesis Corporation
    Inventor: Yehoshua Shachar
  • Publication number: 20090220563
    Abstract: An artificial tooth apparatus for dispensing medicating agents to the body through the patient's jaw bone comprising a mechanical movement and kinetic mainspring winder, a tourbillon mechanism, a electronic regulator, and a pump mechanism arranged and configured to allow any medicating agent to be dispensed from the apparatus in a highly controlled and regulated manner according to input received by the electronic regulator and the patient's specific pharmacokinetic and pharmacodynamic attributes. Multiple artificial teeth or a comprehensive bridge with several chambers may be used in cases where a polypharmaceutical approach is needed.
    Type: Application
    Filed: February 29, 2008
    Publication date: September 3, 2009
    Applicant: Pharmaco-Kinesis Corporation
    Inventor: Yehoshua Shachar
  • Patent number: 7575574
    Abstract: A method and apparatus for local infusion of a variety of biological response modifiers (BRMs) and chemotherapeutic agents including tumor necrosis factors (TNF) is described. In one embodiment, the device contains a synthetic pouch compartmentalized into three or more chambers, and an electronic apparatus controlling and modulating the delivery of the agents to the site of the tumor, so as to achieve a desired regimen in support of the elimination of a tumor burden. In one embodiment, an electronic system provides tailored and controlled regulation of the administration of such agents, using sensors to monitor the progress of the treatment. Desired dosing and scheduling of anti-tumor agents in a local setting is provided. In one embodiment, active control and regulation of the administration of medicating agents is attached to a synthetic pouch and with the aid of a piezoelectric valve and pump actuating mechanism. The apparatus provides the desired dose, duration and timing of dose delivery.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: August 18, 2009
    Assignee: Pharmaco Kinesis Corporation
    Inventor: Yehoshua Shachar