Patents by Inventor Yeong-Jyh Lin
Yeong-Jyh Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250248105Abstract: Some implementations described herein provide a bonding tool having a top bonding fixture that includes an inflatable forcing structure (e.g., a gas bag). When pressurized, the inflatable forcing structure has a curved surface that protrudes from an under side of the top bonding fixture to deform a top semiconductor substrate during a bonding operation. A rate of inflation and/or a pressure within the inflatable forcing structure may be controlled to distribute a force more evenly in a bond region of the semiconductor substrate relative to another bonding tool having another top bonding fixture including a striker pin.Type: ApplicationFiled: January 26, 2024Publication date: July 31, 2025Inventors: Ching-Hung WANG, Tzu-Wei YU, Pin Yen HSIEH, Yeong-Jyh LIN, Kuan-Liang LIU, Ching I LI, Kai-Yun YANG, Min-Chang CHING
-
Publication number: 20250230536Abstract: The present disclosure relates to a processing tool that includes a first wafer-mounting frame and a second wafer-mounting frame. The first wafer-mounting frame is configured to retain a target wafer. The second wafer-mounting frame is configured to retain a masking wafer. The masking wafer includes a mask pattern made up of a number of openings passing through the masking wafer to correspond to a predetermined deposition pattern to be formed on the target wafer. A deposition chamber is configured to receive the first and second wafer-mounting frames, when the first and second wafer-mounting frames are clamped together to retain the target wafer and the masking wafer. The deposition chamber includes a material deposition source configured to deposit material from the material deposition source through the number of openings in the mask pattern to form the material in the predetermined deposition pattern on the target wafer.Type: ApplicationFiled: April 1, 2025Publication date: July 17, 2025Inventors: Ping-Yin Liu, Chia-Shiung Tsai, Xin-Hua Huang, Yu-Hsing Chang, Yeong-Jyh Lin
-
Patent number: 12334475Abstract: Various embodiments of the present disclosure are directed towards a three-dimensional (3D) trench capacitor, as well as methods for forming the same. In some embodiments, a first substrate overlies a second substrate so a front side of the first substrate faces a front side of the second substrate. A first trench capacitor and a second trench capacitor extend respectively into the front sides of the first and second substrates. A plurality of wires and a plurality of vias are stacked between and electrically coupled to the first and second trench capacitors. A first through substrate via (TSV) extends through the first substrate from a back side of the first substrate, and the wires and the vias electrically couple the first TSV to the first and second trench capacitors. The first and second trench capacitors and the electrical coupling therebetween collectively define the 3D trench capacitor.Type: GrantFiled: November 17, 2023Date of Patent: June 17, 2025Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Xin-Hua Huang, Chung-Yi Yu, Yeong-Jyh Lin, Rei-Lin Chu
-
Patent number: 12289979Abstract: The present disclosure relates to a processing tool that includes a first wafer-mounting frame and a second wafer-mounting frame. The first wafer-mounting frame is configured to retain a target wafer. The second wafer-mounting frame is configured to retain a masking wafer. The masking wafer includes a mask pattern made up of a number of openings passing through the masking wafer to correspond to a predetermined deposition pattern to be formed on the target wafer. A deposition chamber is configured to receive the first and second wafer-mounting frames, when the first and second wafer-mounting frames are clamped together to retain the target wafer and the masking wafer. The deposition chamber includes a material deposition source configured to deposit material from the material deposition source through the number of openings in the mask pattern to form the material in the predetermined deposition pattern on the target wafer.Type: GrantFiled: July 28, 2023Date of Patent: April 29, 2025Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Ping-Yin Liu, Chia-Shiung Tsai, Xin-Hua Huang, Yu-Hsing Chang, Yeong-Jyh Lin
-
Patent number: 12230585Abstract: Various embodiments of the present disclosure are directed towards a method for forming an integrated chip. An alignment process is performed on a first semiconductor workpiece and a second semiconductor workpiece by virtue of a plurality of workpiece pins. The first semiconductor workpiece is bonded to the second semiconductor workpiece. A shift value is determined between the first and second semiconductor workpieces by virtue of a first plurality of alignment marks on the first semiconductor workpiece and a second plurality of alignment marks on the second semiconductor workpiece. A layer of an integrated circuit (IC) structure is formed over the second semiconductor workpiece based at least in part on the shift value.Type: GrantFiled: January 24, 2024Date of Patent: February 18, 2025Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Yeong-Jyh Lin, Ching I Li, De-Yang Chiou, Sz-Fan Chen, Han-Jui Hu, Ching-Hung Wang, Ru-Liang Lee, Chung-Yi Yu
-
Patent number: 12213323Abstract: In some embodiments, the present disclosure relates to an integrated chip that includes a first and second transistors arranged over a substrate. The first transistor includes first channel structures extending between first and second source/drain regions. A first gate electrode is arranged between the first channel structures, and a first protection layer is arranged over a topmost one of the first channel structures. The second transistor includes second channel structures extending between the second source/drain region and a third source/drain region. A second gate electrode is arranged between the second channel structures, and a second protection layer is arranged over a topmost one of the second channel structures. The integrated chip further includes a first interconnect structure arranged between the substrate and the first and second channel structures, and a contact plug structure coupled to the second source/drain region and arranged above the first and second gate electrodes.Type: GrantFiled: August 9, 2023Date of Patent: January 28, 2025Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Kuan-Liang Liu, Sheng-Chau Chen, Chung-Liang Cheng, Chia-Shiung Tsai, Yeong-Jyh Lin, Pinyen Lin, Huang-Lin Chao
-
Publication number: 20240381667Abstract: In some embodiments, the present disclosure relates to an integrated chip that includes a first and second transistors arranged over a substrate. The first transistor includes first channel structures extending between first and second source/drain regions. A first gate electrode is arranged between the first channel structures, and a first protection layer is arranged over a topmost one of the first channel structures. The second transistor includes second channel structures extending between the second source/drain region and a third source/drain region. A second gate electrode is arranged between the second channel structures, and a second protection layer is arranged over a topmost one of the second channel structures. The integrated chip further includes a first interconnect structure arranged between the substrate and the first and second channel structures, and a contact plug structure coupled to the second source/drain region and arranged above the first and second gate electrodes.Type: ApplicationFiled: July 23, 2024Publication date: November 14, 2024Inventors: Kuan-Liang Liu, Sheng-Chau Chen, Chung-Liang Cheng, Chia-Shiung Tsai, Yeong-Jyh Lin, Pinyen Lin, Huang-Lin Chao
-
Publication number: 20240186258Abstract: Various embodiments of the present disclosure are directed towards a method for forming an integrated chip. An alignment process is performed on a first semiconductor workpiece and a second semiconductor workpiece by virtue of a plurality of workpiece pins. The first semiconductor workpiece is bonded to the second semiconductor workpiece. A shift value is determined between the first and second semiconductor workpieces by virtue of a first plurality of alignment marks on the first semiconductor workpiece and a second plurality of alignment marks on the second semiconductor workpiece. A layer of an integrated circuit (IC) structure is formed over the second semiconductor workpiece based at least in part on the shift value.Type: ApplicationFiled: January 24, 2024Publication date: June 6, 2024Inventors: Yeong-Jyh Lin, Ching I Li, De-Yang Chiou, Sz-Fan Chen, Han-Jui Hu, Ching-Hung Wang, Ru-Liang Lee, Chung-Yi Yu
-
Publication number: 20240088103Abstract: Various embodiments of the present disclosure are directed towards a three-dimensional (3D) trench capacitor, as well as methods for forming the same. In some embodiments, a first substrate overlies a second substrate so a front side of the first substrate faces a front side of the second substrate. A first trench capacitor and a second trench capacitor extend respectively into the front sides of the first and second substrates. A plurality of wires and a plurality of vias are stacked between and electrically coupled to the first and second trench capacitors. A first through substrate via (TSV) extends through the first substrate from a back side of the first substrate, and the wires and the vias electrically couple the first TSV to the first and second trench capacitors. The first and second trench capacitors and the electrical coupling therebetween collectively define the 3D trench capacitor.Type: ApplicationFiled: November 17, 2023Publication date: March 14, 2024Inventors: Xin-Hua Huang, Chung-Yi Yu, Yeong-Jyh Lin, Rei-Lin Chu
-
Patent number: 11925033Abstract: In some embodiments, the present disclosure relates to an integrated chip that includes a first and second transistors arranged over a substrate. The first transistor includes first channel structures extending between first and second source/drain regions. A first gate electrode is arranged between the first channel structures, and a first protection layer is arranged over a topmost one of the first channel structures. The second transistor includes second channel structures extending between the second source/drain region and a third source/drain region. A second gate electrode is arranged between the second channel structures, and a second protection layer is arranged over a topmost one of the second channel structures. The integrated chip further includes a first interconnect structure arranged between the substrate and the first and second channel structures, and a contact plug structure coupled to the second source/drain region and arranged above the first and second gate electrodes.Type: GrantFiled: March 30, 2021Date of Patent: March 5, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Kuan-Liang Liu, Sheng-Chau Chen, Chung-Liang Cheng, Chia-Shiung Tsai, Yeong-Jyh Lin, Pinyen Lin, Huang-Lin Chao
-
Patent number: 11916022Abstract: Various embodiments of the present disclosure are directed towards a semiconductor processing system including an overlay (OVL) shift measurement device. The OVL shift measurement device is configured to determine an OVL shift between a first wafer and a second wafer, where the second wafer overlies the first wafer. A photolithography device is configured to perform one or more photolithography processes on the second wafer. A controller is configured to perform an alignment process on the photolithography device according to the determined OVL shift. The photolithography device performs the one or more photolithography processes based on the OVL shift.Type: GrantFiled: June 7, 2022Date of Patent: February 27, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Yeong-Jyh Lin, Ching I Li, De-Yang Chiou, Sz-Fan Chen, Han-Jui Hu, Ching-Hung Wang, Ru-Liang Lee, Chung-Yi Yu
-
Patent number: 11862612Abstract: Various embodiments of the present disclosure are directed towards a three-dimensional (3D) trench capacitor, as well as methods for forming the same. In some embodiments, a first substrate overlies a second substrate so a front side of the first substrate faces a front side of the second substrate. A first trench capacitor and a second trench capacitor extend respectively into the front sides of the first and second substrates. A plurality of wires and a plurality of vias are stacked between and electrically coupled to the first and second trench capacitors. A first through substrate via (TSV) extends through the first substrate from a back side of the first substrate, and the wires and the vias electrically couple the first TSV to the first and second trench capacitors. The first and second trench capacitors and the electrical coupling therebetween collectively define the 3D trench capacitor.Type: GrantFiled: December 20, 2021Date of Patent: January 2, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Xin-Hua Huang, Chung-Yi Yu, Yeong-Jyh Lin, Rei-Lin Chu
-
Publication number: 20230389335Abstract: In some embodiments, the present disclosure relates to an integrated chip that includes a first and second transistors arranged over a substrate. The first transistor includes first channel structures extending between first and second source/drain regions. A first gate electrode is arranged between the first channel structures, and a first protection layer is arranged over a topmost one of the first channel structures. The second transistor includes second channel structures extending between the second source/drain region and a third source/drain region. A second gate electrode is arranged between the second channel structures, and a second protection layer is arranged over a topmost one of the second channel structures. The integrated chip further includes a first interconnect structure arranged between the substrate and the first and second channel structures, and a contact plug structure coupled to the second source/drain region and arranged above the first and second gate electrodes.Type: ApplicationFiled: August 9, 2023Publication date: November 30, 2023Inventors: Kuan-Liang Liu, Sheng-Chau Chen, Chung-Liang Cheng, Chia-Shiung Tsai, Yeong-Jyh Lin, Pinyen Lin, Huang-Lin Chao
-
Publication number: 20230378125Abstract: A bag is filled with liquid, instead of an airbag filled with gas, to deform a bottom wafer toward a top wafer during a wafer bonding process. As a result, the liquid is less susceptible to temperature changes, which reduces run-out variation across wafer bonding processes. Reducing run-out variation conserves wasted wafers by increasing yield and reducing a quantity of non-functioning devices that are produced. Additionally, in some implementations, the liquid may be pre-heated before the bag is filled with the liquid. As a result, the bottom wafer (and, to some extent, the top wafer) experiences some thermal deformation and less mechanical deformation, which further increases yield and reduces a quantity of non-functioning devices that are produced.Type: ApplicationFiled: May 19, 2022Publication date: November 23, 2023Inventors: Tzu-Wei YU, Ching-Hung WANG, Yeong-Jyh LIN, Ching I LI
-
Publication number: 20230371354Abstract: The present disclosure relates to a processing tool that includes a first wafer-mounting frame and a second wafer-mounting frame. The first wafer-mounting frame is configured to retain a target wafer. The second wafer-mounting frame is configured to retain a masking wafer. The masking wafer includes a mask pattern made up of a number of openings passing through the masking wafer to correspond to a predetermined deposition pattern to be formed on the target wafer. A deposition chamber is configured to receive the first and second wafer-mounting frames, when the first and second wafer-mounting frames are clamped together to retain the target wafer and the masking wafer. The deposition chamber includes a material deposition source configured to deposit material from the material deposition source through the number of openings in the mask pattern to form the material in the predetermined deposition pattern on the target wafer.Type: ApplicationFiled: July 28, 2023Publication date: November 16, 2023Inventors: Ping-Yin Liu, Chia-Shiung Tsai, Xin-Hua Huang, Yu-Hsing Chang, Yeong-Jyh Lin
-
Patent number: 11818944Abstract: The present disclosure relates to a processing tool that includes a first wafer-mounting frame and a second wafer-mounting frame. The first wafer-mounting frame is configured to retain a target wafer. The second wafer-mounting frame is configured to retain a masking wafer. The masking wafer includes a mask pattern made up of a number of openings passing through the masking wafer to correspond to a predetermined deposition pattern to be formed on the target wafer. A deposition chamber is configured to receive the first and second wafer-mounting frames, when the first and second wafer-mounting frames are clamped together to retain the target wafer and the masking wafer. The deposition chamber includes a material deposition source configured to deposit material from the material deposition source through the number of openings in the mask pattern to form the material in the predetermined deposition pattern on the target wafer.Type: GrantFiled: March 2, 2020Date of Patent: November 14, 2023Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Ping-Yin Liu, Chia-Shiung Tsai, Xin-Hua Huang, Yu-Hsing Chang, Yeong-Jyh Lin
-
Publication number: 20230282612Abstract: Various embodiments of the present disclosure are directed towards a method for forming a semiconductor structure. The method includes performing a bonding process to bond a first semiconductor substrate to a second semiconductor substrate. A shift measurement process is performed on the first and second semiconductor substrates. The shift measurement process includes moving a plurality of substrate pins from a plurality of initial positions to a plurality of measurement positions. The plurality of substrate pins are disposed outside of perimeters of the first and second semiconductor substrates. A shift value is determined between the first semiconductor substrate and the second semiconductor substrate based at least in part on a difference between the plurality of initial positions and the plurality of measurement positions.Type: ApplicationFiled: May 8, 2023Publication date: September 7, 2023Inventors: Ching-Hung Wang, Yeong-Jyh Lin, Ching I Li, Tzu-Wei Yu, Chung-Yi Yu
-
Patent number: 11688717Abstract: Various embodiments of the present disclosure are directed towards a method for forming a semiconductor structure. The method includes loading a first wafer and a second wafer onto a bonding platform such that the second wafer overlies the first wafer. An alignment process is performed to align the second wafer over the first wafer by virtue of a plurality of wafer pins, where a plurality of first parameters are associated with the wafer pins during the alignment process. The second wafer is bonded to the first wafer. An overlay (OVL) measurement process is performed on the first wafer and the second wafer by virtue of the plurality of wafer pins, where a plurality of second parameters are associated with the wafer pins during the alignment process.Type: GrantFiled: August 26, 2021Date of Patent: June 27, 2023Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Ching-Hung Wang, Yeong-Jyh Lin, Ching I Li, Tzu-Wei Yu, Chung-Yi Yu
-
Publication number: 20230066893Abstract: Various embodiments of the present disclosure are directed towards a method for forming a semiconductor structure. The method includes loading a first wafer and a second wafer onto a bonding platform such that the second wafer overlies the first wafer. An alignment process is performed to align the second wafer over the first wafer by virtue of a plurality of wafer pins, where a plurality of first parameters are associated with the wafer pins during the alignment process. The second wafer is bonded to the first wafer. An overlay (OVL) measurement process is performed on the first wafer and the second wafer by virtue of the plurality of wafer pins, where a plurality of second parameters are associated with the wafer pins during the alignment process.Type: ApplicationFiled: August 26, 2021Publication date: March 2, 2023Inventors: Ching-Hung Wang, Yeong-Jyh Lin, Ching I Li, Tzu-Wei Yu, Chung-Yi Yu
-
Publication number: 20220328419Abstract: Various embodiments of the present disclosure are directed towards a semiconductor processing system including an overlay (OVL) shift measurement device. The OVL shift measurement device is configured to determine an OVL shift between a first wafer and a second wafer, where the second wafer overlies the first wafer. A photolithography device is configured to perform one or more photolithography processes on the second wafer. A controller is configured to perform an alignment process on the photolithography device according to the determined OVL shift. The photolithography device performs the one or more photolithography processes based on the OVL shift.Type: ApplicationFiled: June 7, 2022Publication date: October 13, 2022Inventors: Yeong-Jyh Lin, Ching I. Li, De-Yang Chiou, Sz-Fan Chen, Han-Jui Hu, Ching-Hung Wang, Ru-Liang Lee, Chung-Yi Yu