Patents by Inventor Yet-Ming Chiang

Yet-Ming Chiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10964973
    Abstract: Embodiments described herein relate generally to devices, systems and methods of producing high energy density batteries having a semi-solid cathode that is thicker than the anode. An electrochemical cell can include a positive electrode current collector, a negative electrode current collector and an ion-permeable membrane disposed between the positive electrode current collector and the negative electrode current collector. The ion-permeable membrane is spaced a first distance from the positive electrode current collector and at least partially defines a positive electroactive zone. The ion-permeable membrane is spaced a second distance from the negative electrode current collector and at least partially defines a negative electroactive zone. The second distance is less than the first distance.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: March 30, 2021
    Assignee: 24M Technologies, Inc.
    Inventors: Taison Tan, Yet-Ming Chiang, Naoki Ota, Throop Wilder, Mihai Duduta
  • Publication number: 20210028452
    Abstract: Materials, designs, and methods of fabrication for iron-manganese oxide electrochemical cells are disclosed. In various embodiments, the negative electrode is comprised of pelletized, briquetted, or pressed iron-bearing components, including metallic iron or iron-based compounds (oxides, hydroxides, sulfides, or combinations thereof), collectively called “iron negative electrode.” In various embodiments, the positive electrode is comprised of pelletized, briquetted, or pressed manganese-bearing components, including manganese (IV) oxide (MnO2), manganese (III) oxide (Mn2O3), manganese (III) oxyhydroxide (MnOOH), manganese (II) oxide (MnO), manganese (II) hydroxide (Mn(OH)2), or combinations thereof, collectively called “manganese oxide positive electrode.” In various embodiments, electrolyte is comprised of aqueous alkali metal hydroxide including lithium hydroxide (LiOH), sodium hydroxide (NaOH), potassium hydroxide (KOH), cesium hydroxide (CsOH), or combinations thereof.
    Type: Application
    Filed: July 25, 2020
    Publication date: January 28, 2021
    Inventors: Liang SU, Jarrod David MILSHTEIN, William Henry WOODFORD, Yet-Ming CHIANG, Jay WHITACRE, Lucas COHEN, Rupak CHAKRABORTY, Andrew Haynes LIOTTA, Ian Salmon MCKAY, Thomas CONRY, Michael Andrew GIBSON, Jocelyn Marie NEWHOUSE, Amelie Nina KHAREY, Annelise Christine THOMPSON, Weston SMITH, Joseph Anthony PANTANO, Isabella CARUSO, Benjamin Thomas HULTMAN, Max Rae CHU, Nicholas PERKINS, Florian WEHNER, Rebecca EISENACH, Mitchell Terrance WESTWOOD, Tristan GILBERT, Rachel Elizabeth MUMMA, Brandon UBER, Eric WEBER, Danielle Cassidy SMITH, Brooke WOJESKI
  • Publication number: 20210028457
    Abstract: Systems and methods of the various embodiments may provide metal electrodes for electrochemical cells. In various embodiments, the electrodes may comprise iron. Various methods may enable achieving high surface area with low cost for production of metal electrodes, such as iron electrodes.
    Type: Application
    Filed: July 24, 2020
    Publication date: January 28, 2021
    Inventors: Jocelyn Marie NEWHOUSE, Jarrod David MILSHTEIN, Rupak CHAKRABORTY, Amelie Nina KHAREY, William Henry WOODFORD, Yet-Ming CHIANG, Michael GIBSON, Annelise Christine THOMPSON, Weston SMITH, Joseph Anthony PANTANO, Isabella CARUSO, Benjamin Thomas HULTMAN, Max Rae CHU, Liang SU, Nicholas PERKINS, Florian WEHNER, Rebecca EISENACH, Mitchell Terrance WESTWOOD, Tristan GILBERT, Andrew LIOTTA, Thomas CONRY, Rachel Elizabeth MUMMA, Brandon UBER, Eric WEBER, Danielle Cassidy SMITH, Brooke WOJESKI
  • Publication number: 20200411879
    Abstract: Systems and methods of the various embodiments may provide low cost bifunctional air electrodes. Various embodiments may provide a bifunctional air electrode, including a metal substrate and particles of metal and/or metal oxide catalyst and/or metal nitride catalyst coated on the metal substrate. Various embodiments may provide a bifunctional air electrode, including a first portion configured to engage an oxygen reduction reaction (ORR) in a discharge mode and a second portion configured to engage an oxygen evolution reaction (OER) in a charge mode. Various embodiments may provide a method for making an air electrode including coating a metal substrate with particles of metal and/or metal oxide catalyst and/or metal nitride catalyst. Various embodiments may provide batteries including air electrodes.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 31, 2020
    Inventors: Katherine HARTMAN, Kristen CARLISLE, Jarrod David MILSHTEIN, Liang SU, Rupak CHAKRABORTY, Yet-Ming CHIANG, Thomas JARAMILLO, William Henry WOODFORD, Marco FERRARA, Mateo Cristian JARAMILLO, Theodore Alan WILEY, Erick RUOFF, Nicholas Reed PERKINS, Marc-Antoni GOULET, Joycelyn NEWHOUSE, Andrew Haynes LIOTTA, Bradley MILESON, Michael Andrew GIBSON, Eric WEBER, Annelise Christine THOMPSON
  • Publication number: 20200411932
    Abstract: Systems and methods of the various embodiments may provide device architectures for batteries. In various embodiments, these may be primary or secondary batteries. In various embodiments these devices may be useful for energy storage. Various embodiments may provide a battery including an Oxygen Reduction Reaction (ORR) electrode, an Oxygen Evolution Reaction (OER) electrode, a metal electrode; and an electrolyte separating the ORR electrode and the OER electrode from the metal electrode.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 31, 2020
    Inventors: Eric WEBER, Mitchell Terrance WESTWOOD, Rachel Elizabeth MUMMA, Alexander H. SLOCUM, Liang SU, Jarrod David MILSHTEIN, William Henry WOODFORD, Yet-Ming CHIANG, Mateo Cristian JARAMILLO, Ian Salmon MCKAY, Fikile BRUSHETT, Helen Van BENSCHOTEN, Tristan GILBERT, Nicholas Reed PERKINS, Joseph Anthony PANTANO, Weston SMITH, Kristen CARLISLE, Isabella CARUSO, Benjamin Thomas HULTMAN, Annelise Christine THOMPSON, Danielle SMITH, Vladimir TARASOV, Katherine HARTMAN, Andrew Haynes LIOTTA, Onur TALU, Marc-Antoni GOULET, Rupak CHAKRABORTY, Florian WEHNER, Bradley MILESON, Alexandra ROUSSEAU
  • Publication number: 20200403234
    Abstract: Electrochemical devices, and associated materials and methods, are generally described. In some embodiments, an electrochemical device comprises an electroactive material. The electroactive material may comprise an alloy having a solid phase and a liquid phase that co-exist with each other. As a result, such a composite electrode may have, in some cases, the mechanical softness to permit both high energy densities and an improved current density as compared to, for example, a substantially pure metal electrode.
    Type: Application
    Filed: April 17, 2020
    Publication date: December 24, 2020
    Applicants: Massachusetts Institute of Technology, Carnegie Mellon University
    Inventors: Yet-Ming Chiang, Richard Park, Venkatasubramanian Viswanathan, Shashank Sripad, Zijian Hong, Pinwen Guan
  • Publication number: 20200321601
    Abstract: A method of manufacturing an electrochemical cell includes transferring an anode semi-solid suspension to an anode compartment defined at least in part by an anode current collector and an separator spaced apart from the anode collector. The method also includes transferring a cathode semi-solid suspension to a cathode compartment defined at least in part by a cathode current collector and the separator spaced apart from the cathode collector. The transferring of the anode semi-solid suspension to the anode compartment and the cathode semi-solid to the cathode compartment is such that a difference between a minimum distance and a maximum distance between the anode current collector and the separator is maintained within a predetermined tolerance. The method includes sealing the anode compartment and the cathode compartment.
    Type: Application
    Filed: January 7, 2020
    Publication date: October 8, 2020
    Applicant: 24M Technologies, Inc.
    Inventors: Alexander H. SLOCUM, Tristan DOHERTY, Ricardo BAZZARELLA, James C. CROSS, III, Pimpa LIMTHONGKUL, Mihai DUDUTA, Jeffry DISKO, Allen YANG, Throop WILDER, William Craig CARTER, Yet-Ming CHIANG
  • Patent number: 10727488
    Abstract: Metal-sulfur energy storage devices also comprising new redox mediator compounds are described.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: July 28, 2020
    Assignees: The Massachusetts Institute of Technology, The Regents of the University of California
    Inventors: Brett A. Helms, Peter D. Frischmann, Yet-Ming Chiang, Frank Y. Fan, Sean E. Doris, Laura C. H. Gerber
  • Publication number: 20200220204
    Abstract: Embodiments described herein relate generally to devices, systems and methods of producing high energy density batteries having a semi-solid cathode that is thicker than the anode. An electrochemical cell can include a positive electrode current collector, a negative electrode current collector and an ion-permeable membrane disposed between the positive electrode current collector and the negative electrode current collector. The ion-permeable membrane is spaced a first distance from the positive electrode current collector and at least partially defines a positive electroactive zone. The ion-permeable membrane is spaced a second distance from the negative electrode current collector and at least partially defines a negative electroactive zone. The second distance is less than the first distance.
    Type: Application
    Filed: November 22, 2019
    Publication date: July 9, 2020
    Applicant: 24M Technologies, Inc.
    Inventors: Taison TAN, Yet-Ming CHIANG, Naoki OTA, Throop WILDER, Mihai DUDUTA
  • Patent number: 10675819
    Abstract: The use of magnetic fields in the production of porous articles is generally described. Certain embodiments are related to methods of producing porous articles in which magnetic fields are applied to an emulsion to align emulsion droplets. In some embodiments, after the emulsion droplets have been aligned, the emulsion droplets and/or the medium surrounding the emulsion droplets can be removed to leave behind a porous article. According to certain embodiments, polyvinyl alcohol can be used, for example, to stabilize the emulsion droplets and/or bind together components of the porous article. In some embodiments, water-soluble liquid alcohol can be used, for example, to stabilize the suspension of electronically conductive material within a phase of the emulsion.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: June 9, 2020
    Assignees: Massachusetts Institute of Technology, Northeastern University
    Inventors: Linsen Li, Jonathan Samuel Sander, Yet-Ming Chiang, Randall Morgan Erb
  • Publication number: 20200161688
    Abstract: Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode and a semi-solid cathode. The semi-solid cathode includes a suspension of an active material of about 35% to about 75% by volume of an active material and about 0.5% to about 8% by volume of a conductive material in a non-aqueous liquid electrolyte. An ion-permeable membrane is disposed between the anode and the semi-solid cathode. The semi-solid cathode has a thickness of about 250 ?m to about 2,000 ?m, and the electrochemical cell has an area specific capacity of at least about 7 mAh/cm2 at a C-rate of C/4. In some embodiments, the semi-solid cathode slurry has a mixing index of at least about 0.9.
    Type: Application
    Filed: October 8, 2019
    Publication date: May 21, 2020
    Applicant: 24M Technologies, Inc.
    Inventors: Yet-Ming CHIANG, Mihai DUDUTA, Richard K. HOLMAN, Pimpa LIMTHONGKUL, Taison TAN
  • Publication number: 20200119384
    Abstract: Electrochemical apparatuses containing electrolytes that include redox-active reactants that may be present as both a dissolved species and as a solid during a charging and/or discharging process, and related methods are generally described. The redox-active reactant may contain an active species, and the electrolyte may contain a total concentration of the active species that is greater than if the redox-active reactant were completely dissolved during an entire charging and/or discharging process. The electrochemical apparatuses described may provide relatively high energy storage capacity.
    Type: Application
    Filed: October 9, 2019
    Publication date: April 16, 2020
    Applicant: Massachusetts Institute of Technology
    Inventors: Yet-Ming Chiang, Zheng Li, Liang Su, Menghsuan Sam Pan
  • Patent number: 10569480
    Abstract: The use of magnetic fields in the production of porous articles is generally described. Certain embodiments comprise exposing a matrix to a magnetic field such that particles within the matrix form one or more elongated regions (e.g., one or more regions in which the particles chain). In some embodiments, after the magnetic field has been applied, the particles and/or a liquid within the matrix can be at least partially removed. Removal of the particles and/or the liquid can leave behind anisotropic pores within the remainder of the matrix material.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: February 25, 2020
    Assignees: Massachusetts Institute of Technology, Northeastern University
    Inventors: Jonathan Samuel Sander, Yet-Ming Chiang, Randall Morgan Erb
  • Patent number: 10566603
    Abstract: A method of manufacturing an electrochemical cell includes transferring an anode semi-solid suspension to an anode compartment defined at least in part by an anode current collector and an separator spaced apart from the anode collector. The method also includes transferring a cathode semi-solid suspension to a cathode compartment defined at least in part by a cathode current collector and the separator spaced apart from the cathode collector. The transferring of the anode semi-solid suspension to the anode compartment and the cathode semi-solid to the cathode compartment is such that a difference between a minimum distance and a maximum distance between the anode current collector and the separator is maintained within a predetermined tolerance. The method includes sealing the anode compartment and the cathode compartment.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: February 18, 2020
    Assignee: 24M Technologies, Inc.
    Inventors: Alexander H. Slocum, Tristan Doherty, Ricardo Bazzarella, James C. Cross, III, Pimpa Limthongkul, Mihai Duduta, Jeffry Disko, Allen Yang, Throop Wilder, William Craig Carter, Yet-Ming Chiang
  • Publication number: 20200044296
    Abstract: Embodiments described herein relate generally to methods for the remediation of electrochemical cell electrodes. In some embodiments, a method includes obtaining an electrode material. At least a portion of the electrode material is rinsed to remove a residue therefrom. The electrode material is separated into constituents for reuse.
    Type: Application
    Filed: July 31, 2019
    Publication date: February 6, 2020
    Inventors: Yet-Ming CHIANG, William WOODFORD, Hiuling Zoe YU
  • Publication number: 20200036002
    Abstract: Various embodiments provide a battery, a bulk energy storage system including the battery, and/or a method of operating the bulk energy storage system including the battery. In various embodiment, the battery may include a first electrode, an electrolyte, and a second electrode, wherein one or both of the first electrode and the second electrode comprises direct reduced iron (“DRI”). In various embodiments, the DRI may be in the form of pellets. In various embodiments, the pellets may comprise at least about 60 wt % iron by elemental mass, based on the total mass of the pellets. In various embodiments, one or both of the first electrode and the second electrode comprises from about 60% to about 90% iron and from about 1% to about 40% of a component comprising one or more of the materials selected from the group of SiO2, Al2O3, MgO, CaO, and TiO2.
    Type: Application
    Filed: July 26, 2019
    Publication date: January 30, 2020
    Inventors: Rupak CHAKRABORTY, Jarrod David MILSHTEIN, Eric WEBER, William Henry WOODFORD, Yet-Ming CHIANG, Ian Salmon MCKAY, Liang SU, Jay WHITACRE, Theodore Alan WILEY, Kristen CARLISLE, Mitchell Terrance WESTWOOD, Rachel Elizabeth MUMMA, Max Rae CHU, Amelie Nina KHAREY, Benjamin Thomas HULTMAN, Marco FERRARA, Mateo Cristian JARAMILLO, Isabella CARUSO, Jocelyn NEWHOUSE
  • Publication number: 20200028165
    Abstract: The present invention is generally related to separators for use in lithium metal batteries, and associated systems and products. Certain embodiments are related to separators that form or are repaired when an electrode is held at a voltage. In some embodiments, an electrochemical cell may comprise an electrolyte that comprises a precursor for the separator.
    Type: Application
    Filed: June 4, 2019
    Publication date: January 23, 2020
    Applicants: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, Carnegie Mellon University
    Inventors: Yet-Ming Chiang, Venkatasubramanian Viswanathan, Linsen Li, Vikram Pande, David Wang
  • Publication number: 20200006828
    Abstract: Systems and methods of the various embodiments may provide metal air electrochemical cell architectures. Various embodiments may provide a battery, such as an unsealed battery or sealed battery, with an open cell arrangement configured such that a liquid electrolyte layer separates a metal electrode from an air electrode. In various embodiments, the electrolyte may be disposed within one or more vessel of the battery such that electrolyte serves as a barrier between a metal electrode and gaseous oxygen. Systems and methods of the various embodiments may provide for removing a metal electrode from electrolyte to prevent self-discharge of the metal electrode. Systems and methods of the various embodiments may provide a three electrode battery configured to operate each in a discharge mode, but with two distinct electrochemical reactions occurring at each electrode.
    Type: Application
    Filed: June 28, 2019
    Publication date: January 2, 2020
    Inventors: Jarrod David MILSHTEIN, Mitchell Terrance WESTWOOD, William Henry WOODFORD, Yet-Ming CHIANG, Mateo Cristian JARAMILLO, Ian Salmon MCKAY, Rachel Elizabeth MUMMA, Eric WEBER, Liang SU, Amelie Nina KHAREY, Marco FERRARA, Theodore Alan WILEY
  • Publication number: 20200006796
    Abstract: An electrochemical cell and battery system including cells, each cell including a catholyte, an anolyte, and a separator disposed between the catholyte and anolyte and that is permeable to the at least one ionic species (for example, a metal cation or the hydroxide ion). The catholyte solution includes a ferricyanide, permanganate, manganate, sulfur, and/or polysulfide compound, and the anolyte includes a sulfide and/or polysulfide compound. These electrochemical couples may be embodied in various physical architectures, including static (non-flowing) architectures or in flow battery (flowing) architectures.
    Type: Application
    Filed: June 28, 2019
    Publication date: January 2, 2020
    Inventors: Liang Su, Wei Xie, Yet-Ming Chiang, William Henry Woodford, Lucas Cohen, Jessa Silver, Katelyn Ripley, Eric Weber, Marco Ferrara, Mateo Cristian Jaramillo, Theodore Alan Wiley
  • Publication number: 20200006745
    Abstract: Systems and methods of the various embodiments may provide a battery including a rolling diaphragm configured to move to accommodate an internal volume change of one or more components of the battery. Systems and methods of the various embodiments may provide a battery housing including a rolling diaphragm seal disposed between an interior volume of the battery and an electrode assembly within the battery. Various embodiments may provide an air electrode assembly including an air electrode supported on a buoyant platform such that the air electrode is above a surface of a volume of electrolyte when the buoyant platform is floating in the electrolyte.
    Type: Application
    Filed: June 28, 2019
    Publication date: January 2, 2020
    Inventors: Mitchell Terrance Westwood, Alexander H. Slocum, William Henry Woodford, Yet-Ming Chiang, Ian Salmon McKay, Mateo Cristian Jaramillo, Eric Weber, Jarrod David Milshtein, Liang Su, Rupak Chakraborty, Rachel Elizabeth Mumma, Marc-Antoni Goulet, Brian Beggan, Marco Ferrara, Theodore Alan Wiley