Patents by Inventor Yet-Ming Chiang

Yet-Ming Chiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10319989
    Abstract: Embodiments described herein relate generally to lithium sulfur batteries and methods of producing the same. As described herein, preventing coarsening of sulfur during the well-known melt-diffusion processing of cathodes allows a high areal capacity of 10.7 mAh/cm2 at current density of 3.4 mA/cm2 (C-rate of 1/5 h?1). The addition of a lithium salt, such as LiTFSI, prior to melt-diffusion can prevent coarsening of molten sulfur and allows creation of a sulfur electrode with a high concentration of triple-phase junctions for electrochemical reaction. In some embodiments, approximately 60-70% utilization of the theoretical capacity of sulfur is reached at a high loading (e.g., greater than 7.5 mg S/cm2). The electrodes are prepared in lean-electrolyte environment of 3 mlelectrolyte/gsulfur (˜70 vol % of electrolyte in the electrode) for high areal capacity in Li—S batteries.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: June 11, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Xinwei Chen, Jiayan Luo, Yet-Ming Chiang
  • Patent number: 10272492
    Abstract: Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, an interface layer is formed between the object and support in order to inhibit bonding between adjacent surfaces of the support structure and the object during sintering. The support structure may be a multi-part support structure to mitigate mold lock or facilitate removal from enclosed spaces.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: April 30, 2019
    Assignee: Desktop Metal, Inc.
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Ricardo Fulop, Ricardo Chin, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20190118260
    Abstract: Techniques are disclosed for fabricating multi-part assemblies. In particular, by forming release layers between features such as bearings or gear teeth, complex mechanical assemblies can be fabricated in a single additive manufacturing process.
    Type: Application
    Filed: October 25, 2018
    Publication date: April 25, 2019
    Inventors: Peter Alfons Schmitt, Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Patent number: 10232443
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process. The shape of an extrusion nozzle may be varied during extrusion to control, e.g., an amount of build material deposited, a shape of extrudate exiting the nozzle, a feature resolution, and the like.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: March 19, 2019
    Assignee: DESKTOP METAL, INC.
    Inventors: Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Anastasios John Hart, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Matthew David Verminski, Emanuel Michael Sachs, Ricardo Chin
  • Patent number: 10236518
    Abstract: Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: March 19, 2019
    Assignees: 24M Technologies, Inc., Massachusetts Institute of Technology
    Inventors: Yet-Ming Chiang, William Craig Carter, Mihai Duduta, Pimpa Limthongkul
  • Patent number: 10230124
    Abstract: The flow cell includes first and second reservoirs having a selected volume containing a flowable redox electrode. A membrane separates charged and discharged material. An energy-extraction region includes electronically conductive porous current collectors through or adjacent to which the flowable redox electrodes flow and to which charge transfer occurs. Structure is provided for altering orientation of the flow cell whereby gravity induces flow of the flowable redox electrode between the first and second reservoirs to deliver power. By varying the angle of the cell, flow rate and power delivered on discharge or the charge rate on charge may be varied.
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: March 12, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Brandon James Hopkins, Alexander H. Slocum, Xinwei Chen, Yet-Ming Chiang, Frank Yongzhen Fan, Ahmed Helal, Zheng Li, Kyle C. Smith, W. Craig Carter
  • Patent number: 10230128
    Abstract: Embodiments described herein relate generally to electrochemical cells having semi-solid electrodes that have damage tolerance, and in particular, are tolerant to physical damage due to short circuit, crushing, or overheating. In some embodiments, an electrochemical cell includes a positive electrode, a negative electrode and an ion-permeable membrane separating the positive electrode and the negative electrode. At least one of the positive electrode and the negative electrode can include a semi-solid ion-storing redox composition which has a thickness of at least about 250 ?m. The electrochemical cell can have a first operating voltage in a first planar configuration and a second operating voltage in a second non-planar configuration such that the first operating voltage and the second operating voltage are substantially similar. In some embodiments, the electrochemical cell has a bend axis such that the electrochemical cell is bent about the bend axis in the second non-planar configuration.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: March 12, 2019
    Assignee: 24M Technologies, Inc.
    Inventors: Yet-Ming Chiang, Taison Tan, Jeffry Disko, Richard Holman, Mihai Duduta
  • Publication number: 20190060997
    Abstract: Additive fabrication systems generally use support structures to expand the available range of features and geometries in fabricated objects. For example, when a vertical shelf or cantilever extends from an object, a supplemental support structure may be required to provide a surface for fabrication thereon. This process may become more difficult when, e.g., a part will be subjected to downstream processing steps such as debinding or sintering that impose different design rules. To address these challenges and provide a greater range of flexibility and processing speed, it may be useful in certain circumstances to independently fabricate the object and support structures, and then assemble these structures into a composite item for debinding and sintering. This approach also advantageously facilitates various techniques for spraying, dipping, or otherwise applying a release layer between the support structure and the part so that these separate items do not become fused together during sintering.
    Type: Application
    Filed: October 25, 2018
    Publication date: February 28, 2019
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Ricardo Fulop, Ricardo Chin, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20190001412
    Abstract: A variety of additive manufacturing techniques can be adapted to fabricate a substantially net shape object from a computerized model using materials that can be debound and sintered into a fully dense metallic part or the like. However, during sintering, the net shape will shrink as binder escapes and the base material fuses into a dense final part. If the foundation beneath the object does not shrink in a corresponding fashion, the resulting stresses throughout the object can lead to fracturing, warping, or other physical damage to the object resulting in a failed fabrication. To address this issue, a variety of techniques are disclosed for substrates and build plates that contract in a manner complementary to the object during debinding and sintering.
    Type: Application
    Filed: September 5, 2018
    Publication date: January 3, 2019
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Ricardo Fulop, Ricardo Chin, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Patent number: 10164242
    Abstract: Porous electrodes in which the porosity has a low tortuosity are generally provided. In some embodiments, the porous electrodes can be designed to be filled with electrolyte and used in batteries, and can include low tortuosity in the primary direction of ion transport during charge and discharge of the battery. In some embodiments, the electrodes can have a high volume fraction of electrode active material (i.e., low porosity). The attributes outlined above can allow the electrodes to be fabricated with a higher energy density, higher capacity per unit area of electrode (mAh/cm2), and greater thickness than comparable electrodes while still providing high utilization of the active material in the battery during use. Accordingly, the electrodes can be used to produce batteries with high energy densities, high power, or both compared to batteries using electrodes of conventional design with relatively highly tortuous pores.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: December 25, 2018
    Assignees: Massachusetts Institute of Technology, The Regents of the University of Michigan, The Regents of the University of California
    Inventors: Yet-Ming Chiang, Chang-Jun Bae, John William Halloran, Qiang Fu, Antoni P. Tomsia, Can K. Erdonmez
  • Publication number: 20180318933
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process. A former extending from a nozzle of the printer supplements a layer fusion process by applying a normal force on new material as it is deposited to form the object. The former may use a variety of techniques such as heat and rolling to improve physical bonding between layers.
    Type: Application
    Filed: June 29, 2018
    Publication date: November 8, 2018
    Inventors: Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Anastasios John Hart, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Matthew David Verminski, Peter Alfons Schmitt, Emanuel Michael Sachs, Ricardo Chin
  • Publication number: 20180318932
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process. The shape of an extrusion nozzle may be varied during extrusion to control, e.g., an amount of build material deposited, a shape of extrudate exiting the nozzle, a feature resolution, and the like.
    Type: Application
    Filed: June 29, 2018
    Publication date: November 8, 2018
    Inventors: Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Anastasios John Hart, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Matthew David Verminski, Peter Alfons Schmitt, Emanuel Michael Sachs, Ricardo Chin
  • Publication number: 20180318925
    Abstract: A support structure is fabricated below a printed object to form a structure that prevents or minimizes a drag on a floor while the object shrinks during sintering.
    Type: Application
    Filed: June 28, 2018
    Publication date: November 8, 2018
    Inventors: Jonah Samuel Myerberg, Michael Andrew Gibson, Ricardo Fulop, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20180311738
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process. The shape of an extrusion nozzle may be varied during extrusion to control, e.g., an amount of build material deposited, a shape of extrudate exiting the nozzle, a feature resolution, and the like.
    Type: Application
    Filed: June 29, 2018
    Publication date: November 1, 2018
    Inventors: Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Anastasios John Hart, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Matthew David Verminski, Peter Alfons Schmitt, Emanuel Michael Sachs, Ricardo Chin
  • Publication number: 20180304363
    Abstract: A support structure is fabricated below a printed object to form a structure that prevents or minimizes a drag on a floor while the object shrinks during sintering.
    Type: Application
    Filed: June 28, 2018
    Publication date: October 25, 2018
    Inventors: Jonah Samuel Myerberg, Michael Andrew Gibson, Ricardo Fulop, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20180304370
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process. A former extending from a nozzle of the printer supplements a layer fusion process by applying a normal force on new material as it is deposited to form the object. The former may use a variety of techniques such as heat and rolling to improve physical bonding between layers.
    Type: Application
    Filed: June 29, 2018
    Publication date: October 25, 2018
    Inventors: Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Anastasios John Hart, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Matthew David Verminski, Peter Alfons Schmitt, Emanuel Michael Sachs, Ricardo Chin
  • Publication number: 20180304364
    Abstract: A support structure is formed from a support material below a printed object that shrinks similarly to a build material of the printed object during processing in a furnace.
    Type: Application
    Filed: June 28, 2018
    Publication date: October 25, 2018
    Inventors: Jonah Samuel Myerberg, Michael Andrew Gibson, Ricardo Fulop, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20180304369
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process. The shape of an extrusion nozzle may be varied during extrusion to control, e.g., an amount of build material deposited, a shape of extrudate exiting the nozzle, a feature resolution, and the like.
    Type: Application
    Filed: June 29, 2018
    Publication date: October 25, 2018
    Inventors: Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Anastasios John Hart, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Matthew David Verminski, Peter Alfons Schmitt, Emanuel Michael Sachs, Ricardo Chin
  • Publication number: 20180241107
    Abstract: An electrochemical apparatus includes a catholyte, an anolyte, and a separator disposed between the catholyte and the anolyte. The catholyte includes metal salt dissolved in water, thereby providing at least one metal ion. The anolyte includes a polysulfide solution. The separator is permeable to the at least one metal ion. During a charging process of the electrochemical apparatus, oxygen is generated in the catholyte, the polysulfide in the polysulfide solution undergoes a reduction reaction in the anolyte, and the at least one metal ion moves from the catholyte to the anolyte. During a discharging process of the apparatus, the oxygen is consumed in the catholyte, the polysulfide oxidizes in the anolyte, and the at least one metal ion moves from the anolyte to the catholyte.
    Type: Application
    Filed: April 19, 2018
    Publication date: August 23, 2018
    Inventors: Liang Su, Zheng Li, Yet-Ming Chiang, Menghsuan Sam Pan
  • Publication number: 20180229300
    Abstract: Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, an interface layer may be fabricated between the object and support in order to inhibit bonding between adjacent surfaces of the support structure and the object during sintering. Interface layers suitable for manufacture with an additive manufacturing system may resist the formation of bonds between a support structure and an object during subsequent sintering processes.
    Type: Application
    Filed: April 17, 2018
    Publication date: August 16, 2018
    Inventors: Jonah Samuel Myerberg, Michael Andrew Gibson, Ricardo Fulop, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart