Patents by Inventor Yi-Chi Shih

Yi-Chi Shih has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8283221
    Abstract: The present invention provides methods for fabricating devices with low resistance structures involving a lift-off process. A radiation blocking layer is introduced between two resist layers in order to prevent intermixing of the photoresists. Cavities suitable for the formation of low resistance T-gates or L-gates can be obtained by a first exposure, developing, selective etching of blocking layer and a second exposure and developing. In another embodiment, a low resistance gate structure with pillars to enhance mechanical stability or strength is provided.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: October 9, 2012
    Inventors: Ishiang Shih, Chunong Qiu, Cindy X. Qiu, Yi-Chi Shih
  • Publication number: 20110291159
    Abstract: This invention teaches stress release metal electrodes for gate, drain and source in a field effect transistor and stress release metal electrodes for emitter, base and collector in a bipolar transistor. Due to the large difference in the thermal expansion coefficients between semiconductor materials and metal electrodes, significant strain and stresses can be induced in the devices during the fabrication and operation. The present invention provides metal electrode with stress release structures to reduce the strain and stresses in these devices.
    Type: Application
    Filed: June 1, 2010
    Publication date: December 1, 2011
    Inventors: Ishiang Shih, Cindy Xing Qiu, Chunong Qiu, Yi-Chi Shih
  • Patent number: 8013339
    Abstract: Thin film transistors and arrays having controlled threshold voltage and improved ION/IOFF ratio are provided in this invention. In one embodiment, a thin film transistor having a first gate insulator of high breakdown field with positive fixed charges and a second gate insulator with negative fixed charges is provided; said negative fixed charges substantially compensate said positive fixed charges in order to reduce threshold voltage and OFF state threshold voltage of said transistor. In another embodiment, a thin film transistor having a first passivation layer with negative fixed charges is provided, the negative charges reduce substantially unwanted negative charges in the adjacent active channel and hence reduce the OFF state current and increase ION/IOFF ratio, which in turn reduce the threshold voltage of the transistor.
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: September 6, 2011
    Inventors: Ishiang Shih, Cindy X. Qiu, Chunong Qiu, Yi-Chi Shih
  • Publication number: 20110180850
    Abstract: The present invention provides methods for fabricating devices with low resistance structures involving a lift-off process. A radiation blocking layer is introduced between two resist layers in order to prevent intermixing of the photoresists. Cavities suitable for the formation of low resistance T-gates or L-gates can be obtained by a first exposure, developing, selective etching of blocking layer and a second exposure and developing. In another embodiment, a low resistance gate structure with pillars to enhance mechanical stability or strength is provided.
    Type: Application
    Filed: January 25, 2010
    Publication date: July 28, 2011
    Inventors: Ishiang Shih, Chunong Qiu, Cindy X. Qui, Yi-Chi Shih
  • Patent number: 7898462
    Abstract: A radar system comprises a plurality of antenna sub-systems, each operable to transmit and receive radio frequency (RF) signals in a corresponding sector, wherein the plurality of antenna sub-systems are positioned such that the corresponding sectors cover a total range of about 180 degrees to about 360 degrees without rotation of the radar system. The radar system also comprises shared backend circuitry coupled to each of the plurality of antenna sub-systems and operable to process signals from each of the plurality of antenna sub-systems to detect the presence of an obstacle in one of the corresponding sectors.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: March 1, 2011
    Assignee: Honeywell International Inc.
    Inventors: David W. Meyers, Long Bui, Yi-Chi Shih
  • Patent number: 7868817
    Abstract: A radar system comprises a transmitter antenna configured to transmit a radio frequency (RF) signal, a first receiver antenna, and a second receiver antenna. Each of the first and second receiver antennas are configured to receive a reflection of the RF signal, wherein the first and second receiver antennas are synchronized and separated by a vertical distance. The radar system also comprises radar processing circuitry configured to control transmission of the RF signal from the transmitter antenna and to determine an elevation of an object reflecting the RF signal based on the phase difference between the reflected RF signal received by the first receiver antenna and the reflected RF signal received by the second receiver antenna; wherein the transmit antenna, first receiver antenna, and second receiver antenna are operable to continuously rotate 360 degrees along an azimuth angle without rotating along an elevation angle.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: January 11, 2011
    Assignee: Honeywell International Inc.
    Inventors: David W. Meyers, Long Bui, Yi-Chi Shih
  • Publication number: 20100301340
    Abstract: Thin film transistors and arrays having controlled threshold voltage and improved ION/IOFF ratio are provided in this invention. In one embodiment, a thin film transistor having a first gate insulator of high breakdown field with positive fixed charges and a second gate insulator with negative fixed charges is provided; said negative fixed charges substantially compensate said positive fixed charges in order to reduce threshold voltage and OFF state threshold voltage of said transistor. In another embodiment, a thin film transistor having a first passivation layer with negative fixed charges is provided, the negative charges reduce substantially unwanted negative charges in the adjacent active channel and hence reduce the OFF state current and increase ION/IOFF ratio, which in turn reduce the threshold voltage of the transistor.
    Type: Application
    Filed: June 1, 2009
    Publication date: December 2, 2010
    Inventors: Ishiang Shih, Cindy X. Qiu, Chunong Qiu, Yi-Chi Shih
  • Publication number: 20100301343
    Abstract: Thin film transistors and circuits having improved mobility and stability are disclosed in this invention to have metal oxynitrides as the active channel layers. In one embodiment, the charge carrier mobility in the thin film transistors is increased by using the metal oxynitrides as the active channel layers. In another embodiment, a thin film transistor having a p-type metal oxynitride active channel layer and a thin film transistor having an n-type metal oxynitride active channel layer are fabricated to forming a CMOS circuit. In yet another embodiment, thin film transistor circuits having metal oxynitrides as the active channel layers are provided.
    Type: Application
    Filed: June 1, 2009
    Publication date: December 2, 2010
    Inventors: Cindy X. Qiu, Yi-Chi Shih, Chunong Qiu, Ishiang Shih
  • Patent number: 7782250
    Abstract: A millimeter wave radar target simulation system and method. The system includes a down-converter that converts a millimeter wave radar signal to an intermediate frequency, an electrical-to-optical modulator that modulates an optical signal based on the down-converted signal, an optical-to-electrical demodulator that demodulates an optical signal to an electrical signal, an optical delay line serving to delay a signal passing from the electrical-to-optical modulator to the optical-to-electrical demodulator, and an up-converter that converts the electrical signal from the optical-to-electrical demodulator to a frequency that simulates a millimeter wave target return.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: August 24, 2010
    Assignee: Honeywell International Inc.
    Inventors: Yi-Chi Shih, Kiet Mai, Long Bui, Cam Bui
  • Publication number: 20100087967
    Abstract: A radar system comprises a plurality of antenna sub-systems, each operable to transmit and receive radio frequency (RF) signals in a corresponding sector, wherein the plurality of antenna sub-systems are positioned such that the corresponding sectors cover a total range of about 180 degrees to about 360 degrees without rotation of the radar system. The radar system also comprises shared backend circuitry coupled to each of the plurality of antenna sub-systems and operable to process signals from each of the plurality of antenna sub-systems to detect the presence of an obstacle in one of the corresponding sectors.
    Type: Application
    Filed: October 3, 2008
    Publication date: April 8, 2010
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: David W. Meyers, Long Bui, Yi-Chi Shih
  • Publication number: 20100085235
    Abstract: A radar system comprises a transmitter antenna configured to transmit a radio frequency (RF) signal, a first receiver antenna, and a second receiver antenna. Each of the first and second receiver antennas are configured to receive a reflection of the RF signal, wherein the first and second receiver antennas are synchronized and separated by a vertical distance. The radar system also comprises radar processing circuitry configured to control transmission of the RF signal from the transmitter antenna and to determine an elevation of an object reflecting the RF signal based on the phase difference between the reflected RF signal received by the first receiver antenna and the reflected RF signal received by the second receiver antenna; wherein the transmit antenna, first receiver antenna, and second receiver antenna are operable to continuously rotate 360 degrees along an azimuth angle without rotating along an elevation angle.
    Type: Application
    Filed: October 3, 2008
    Publication date: April 8, 2010
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: David W. Meyers, Long Bui, Yi-Chi Shih
  • Publication number: 20100085241
    Abstract: A obstacle detection system comprises a transmission antenna operable to radiate a radio frequency (RF) signal and a transmitter operable to control transmission of the RF signal from the antenna. The obstacle detection system also comprises a receiver antenna operable to receive a reflection of the RF signal; and processing circuitry operable to analyze a plurality of characteristics of a radar cross section (RCS) of the received reflection to identify an obstacle and one or more physical attributes of the obstacle.
    Type: Application
    Filed: October 3, 2008
    Publication date: April 8, 2010
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: David W. Meyers, Long Bui, Yi-Chi Shih, Alan G. Cornett
  • Publication number: 20100066620
    Abstract: A reflector assembly implementable in a scanning antenna assembly having a stationary surface includes a support assembly coupled to the stationary surface, a substantially planar first reflector panel coupled to the support assembly so as to enable rotation of the first reflector panel about a central axis of the first reflector panel, and an actuator assembly comprising a translating arm coupled to the first reflector panel, wherein translational motion of the arm is operable to rotate the first reflector panel about the central axis back and forth through a predetermined angular range at a predetermined frequency.
    Type: Application
    Filed: September 16, 2008
    Publication date: March 18, 2010
    Applicant: HONEYWELL INTERNATIONAL, INC.
    Inventors: Yi-Chi Shih, Long Bui, Tom Rolfer, Kiet Mai, Yaozhong Liu
  • Publication number: 20090315638
    Abstract: A switch for selectively providing an input signal to an output terminal. The switch includes a first waveguide terminal, a second waveguide terminal, a reduced-width waveguide connecting the first waveguide terminal to the second waveguide terminal, and at least one switching element spanning the reduced-width waveguide between the first and second waveguide terminals. The reduced-width waveguide is configured to pass a signal from the first waveguide terminal to the second waveguide terminal when the at least one switching element is in a first state and block a signal when the at least one switching element is in a second state. In some embodiments, the switch also includes at least one additional waveguide terminal and the reduced-width waveguide also connects the first waveguide terminal to the at least one additional waveguide terminal.
    Type: Application
    Filed: June 24, 2008
    Publication date: December 24, 2009
    Applicant: Honeywell International Inc.
    Inventors: Yi-Chi Shih, Kiet Mai, Long Bui
  • Publication number: 20090309783
    Abstract: A millimeter wave radar target simulation system and method. The system includes a down-converter that converts a millimeter wave radar signal to an intermediate frequency, an electrical-to-optical modulator that modulates an optical signal based on the down-converted signal, an optical-to-electrical demodulator that demodulates an optical signal to an electrical signal, an optical delay line serving to delay a signal passing from the electrical-to-optical modulator to the optical-to-electrical demodulator, and an up-converter that converts the electrical signal from the optical-to-electrical demodulator to a frequency that simulates a millimeter wave target return.
    Type: Application
    Filed: June 13, 2008
    Publication date: December 17, 2009
    Applicant: Honeywell International Inc.
    Inventors: Yi-Chi Shih, Kiet Mai, Long Bui, Cam Bui
  • Patent number: 7211825
    Abstract: In electronic displays or imaging units, the control of pixels is achieved by an array of transistors. These transistors are in a thin film form and arranged in a two-dimensional configuration to form switching circuits, driving circuits or even read-out circuits. In this invention, thin film transistors and circuits with indium oxide-based channel layers are provided. These thin film transistors and circuits may be fabricated at low temperatures on various substrates and with high charge carrier mobilities. In addition to conventional rigid substrates, the present thin film transistors and circuits are particularly suited for the fabrication on flexible and transparent substrates for electronic display and imaging applications. Methods for the fabrication of the thin film transistors with indium oxide-based channels are provided.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: May 1, 2007
    Inventors: Yi-Chi Shih, Cindy Xing Qiu, Ishiang Shih, Chunong Qiu
  • Publication number: 20060043372
    Abstract: For light emitting devices used in conventional information displays, the dimensions of each light emitting device are small and the effect of series resistance of electrodes is not too severe in affecting the performance of the displays. When the dimensions or areas of the devices increase for large area display applications, the effect of series resistance becomes significant. This invention provides a light emitting device and array having a reduced effective series resistance for the optically transparent and electrically conducting oxide electrodes.
    Type: Application
    Filed: August 30, 2004
    Publication date: March 2, 2006
    Inventors: Cindy Qiu, Chunong Qiu, Yi-Chi Shih
  • Patent number: 6987429
    Abstract: A precision non-symmetrical L-shape waveguide end-launching probe for launching microwave signals in both vertical and horizontal polarizations is disclosed. The L-shape waveguide probe is in a form of thin plate, has a first arm and a second arm, and is precisely fabricated and attached to one end of the central metal pin of a feedthrough. The feedthrough is installed to an aperture formed in a major wall of the universal conductive housing to achieve hermetic sealing. The L-shape waveguide probe is aligned by means of a specially designed alignment tool so that long axis of the second arm is always perpendicular to the broad walls of the output waveguide, which is mounted to the universal housing with the broad walls of the output waveguide either horizontally or vertically. Hence, in this invention, an end-launching arrangement using the L-shape probes that could yield a flexible waveguide interface either in horizontal polarization or vertical polarization is provided.
    Type: Grant
    Filed: January 7, 2002
    Date of Patent: January 17, 2006
    Inventors: Yi-Chi Shih, Long Q. Bui, Tsuneo Shishido
  • Publication number: 20050275038
    Abstract: In electronic displays or imaging units, the control of pixels is achieved by an array of transistors. These transistors are in a thin film form and arranged in a two-dimensional configuration to form switching circuits, driving circuits or even read-out circuits. In this invention, thin film transistors and circuits with indium oxide-based channel layers are provided. These thin film transistors and circuits may be fabricated at low temperatures on various substrates and with high charge carrier mobilities. In addition to conventional rigid substrates, the present thin film transistors and circuits are particularly suited for the fabrication on flexible and transparent substrates for electronic display and imaging applications. Methods for the fabrication of the thin film transistors with indium oxide-based channels are provided.
    Type: Application
    Filed: June 14, 2004
    Publication date: December 15, 2005
    Inventors: Yi-Chi Shih, Cindy Qiu, Ishiang Shih, Chunong Qiu
  • Patent number: 6949985
    Abstract: As the basic building block of microwave and millimeter wave units and circuits, the microwave switch must fulfill several requirements including low insertion loss, high isolation and small dimensions. For conventional electrostatically actuated microwave MEMS switches, the isolation between DC and RF is achieved using an RF choke. In this invention, a miniature electrostatically actuated microwave switch with a cantilever and employing two resistive lines on a first substrate and act as the actuation electrodes is provided. The resistive lines as the actuation electrodes according to this invention allows one to minimize the switch dimensions, to facilitate the integration and minimize the interference of the propagating microwave or millimeter wave signals.
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: September 27, 2005
    Inventors: Cindy Xing Qiu, Chunong Qiu, Yi-Chi Shih