Patents by Inventor Yi Ru

Yi Ru has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10098166
    Abstract: A method includes: monitoring a plurality of wireless working frequency bands supported by a smart terminal; when a Peer to Peer (P2P) data packet is received at any of the wireless working frequency bands, analyzing the P2P data packet and obtaining device information of a smart device; and establishing a wireless connection with the smart device at the wireless working frequency band according to the device information.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: October 9, 2018
    Assignee: Xiaomi Inc.
    Inventors: Xin Liang, Yi Ru, Guizhou Wu
  • Publication number: 20180261727
    Abstract: The invention provides an LED including a first-type semiconductor layer, an emitting layer, a second-type semiconductor layer, a first electrode, a second electrode, a Bragg reflector structure, a conductive layer and insulation patterns. The first electrode and the second electrode are located on the same side of the Bragg reflector structure. The conductive layer is disposed between the Bragg reflector structure and the second-type semiconductor layer. The insulation patterns are disposed between the conductive layer and the second-type semiconductor layer. Each insulating layer has a first surface facing toward the second-type semiconductor layer, a second surface facing away from the second-type semiconductor layer, and an inclined surface. The inclined surface connects the first surface and the second surface and is inclined with respect to the first surface and the second surface.
    Type: Application
    Filed: May 16, 2018
    Publication date: September 13, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Tung-Lin Chuang, Yan-Ting Lan, Sheng-Tsung Hsu, Chih-Ming Shen, Jing-En Huang, Teng-Hsien Lai, Hung-Chuan Mai, Kuan-Chieh Huang, Shao-Ying Ting, Cheng-Pin Chen, Wei-Chen Chien, Chih-Chin Cheng, Chih-Hung Tseng
  • Publication number: 20180261729
    Abstract: Provided is a light emitting diode (LED) mounted on a carrier substrate and including a semiconductor epitaxial structure and at least one electrode pad structure. The semiconductor epitaxial structure is electrically connected to the carrier substrate. The electrode pad structure includes a eutectic layer, a barrier layer and a ductility layer. The eutectic layer is adapted for eutectic bonding to the carrier substrate. The barrier layer is between the eutectic layer and the semiconductor epitaxial structure. The barrier layer blocks the diffusion of the material of the eutectic layer in the eutectic bonding process. The ductility layer is between the eutectic layer and the semiconductor epitaxial structure. The ductility layer reduces the stress on the LED produced by thermal expansion and contraction of the substrate during the eutectic bonding process, so as to prevent the electrode pad structure from cracking, and maintain the quality of the LED.
    Type: Application
    Filed: May 9, 2018
    Publication date: September 13, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Tung-Lin Chuang, Chih-Ming Shen, Sheng-Tsung Hsu, Kuan-Chieh Huang, Jing-En Huang, Shao-Ying Ting
  • Patent number: 10050183
    Abstract: A light emitting device includes a light emitting unit, a light transmissive layer and an encapsulant. The light emitting unit includes a substrate, an epitaxial structure layer disposed on the substrate, and a first electrode and a second electrode disposed on the same side of the epitaxial structure layer, respectively. The light emitting unit is disposed on the light transmissive layer and at least a part of the first electrode and a part of the second electrode are exposed by the light transmissive layer. The encapsulant encapsulates the light emitting unit and at least exposes a part of the first electrode and a part of the second electrode. Each of the first electrode and the second electrode extends outward from the epitaxial structure layer, and covers at least a part of an upper surface of the encapsulant, respectively.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: August 14, 2018
    Assignee: Genesis Photonics Inc.
    Inventors: Shao-Ying Ting, Kuan-Chieh Huang, Jing-En Huang, Yu-Feng Lin, Yi-Ru Huang
  • Patent number: 10038121
    Abstract: A light emitting diode including a first-type semiconductor layer, an emitting layer, a second-type semiconductor layer, a first electrode, a second electrode, and a Bragg reflector structure. The emitting layer is configured to emit a light beam and is located between the first-type semiconductor layer and the second-type semiconductor layer. The light beam has a peak wavelength in a light emitting wavelength range. The first-type semiconductor layer, the emitting layer, and the second-type semiconductor layer are located on a same side of the Bragg reflector structure. A reflectance of the Bragg reflector structure is greater than or equal to 95% in a reflective wavelength range at least covering 0.8X nm to 1.8X nm, and X is the peak wavelength of the light emitting wavelength range.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: July 31, 2018
    Assignee: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Tung-Lin Chuang, Yan-Ting Lan, Sheng-Tsung Hsu, Chih-Ming Shen, Jing-En Huang, Teng-Hsien Lai, Hung-Chuan Mai, Kuan-Chieh Huang, Shao-Ying Ting
  • Publication number: 20180190882
    Abstract: A flip chip light emitting diode package structure includes a package carrier, a light guiding unit and at least one light emitting unit. The light guiding unit and the light emitting unit are disposed on the package carrier, and the light emitting unit is located between the light guiding unit and the package carrier. A horizontal projection area of the light guiding unit is greater than that of the light emitting unit. The light emitting unit is adapted to emit a light beam, and the light beam enters the light guiding unit and emits from an upper surface of the light guiding unit away from the light emitting unit.
    Type: Application
    Filed: February 28, 2018
    Publication date: July 5, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Jing-En Huang, Shao-Ying Ting, Chih-Ling Wu, Kuan-Yung Liao, Yi-Ru Huang, Yu-Yun Lo
  • Publication number: 20180190887
    Abstract: A light emitting device structure includes a light emitting device, a molding compound, a transparent substrate and a reflective layer. The light emitting device has an upper surface and a lower surface opposite to each other, a side surface connecting the upper and lower surfaces, and a first pad and a second pad located on the lower surface and separated from each other. The molding compound at least encapsulates the upper surface and the side surface, and exposes the first pad and the second pad. The transparent substrate is disposed above the upper surface of the light emitting device, and the molding compound is located between the transparent substrate and the light emitting device. The reflective layer directly covers the side surface of the light emitting device, wherein the molding compound encapsulates the reflective layer and exposes a bottom surface of the reflective layer.
    Type: Application
    Filed: February 28, 2018
    Publication date: July 5, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Shao-Ying Ting, Kuan-Chieh Huang, Jing-En Huang, Yi-Ru Huang
  • Publication number: 20180182742
    Abstract: The disclosure relates to a high-voltage light-emitting diode (HV LED) and a manufacturing method thereof. A plurality of LED dies connected in series, in parallel, or in series and parallel are formed on a substrate. A side surface of the first semiconductor layer of part of the LED dies is aligned with a side surface of the substrate, such that no space for exposing the substrate is reserved between the LED dies and the edges of the substrate, the ratio of the substrate being covered by the LED dies is increased, that is, light-emitting area per unit area is increased, and the efficiency of light extraction of HV LED is improved.
    Type: Application
    Filed: February 23, 2018
    Publication date: June 28, 2018
    Inventors: Tsung-Syun Huang, Chih-Chung Kuo, Yi-Ru Huang, Chih-Ming Shen, Kuan-Chieh Huang, Jing-En Huang
  • Publication number: 20180151545
    Abstract: A light-emitting device and a light-emitting module using the same are provided. The light-emitting device includes a substrate module and a light-emitting component. The substrate module includes a substrate, a first conductive layer, an insulation layer and a second conductive layer. The substrate has an upper surface. The insulation layer is formed on the upper surface of the substrate, separates the substrate and the first conductive layer and has an opening. The second conductive layer connects to the upper surface of the substrate and is separated from the first conductive layer. The light-emitting component is disposed on the substrate module and electrically connected to the first conductive layer and the second conductive layer.
    Type: Application
    Filed: January 24, 2018
    Publication date: May 31, 2018
    Inventors: Yi-Ru Huang, Shao-Ying Ting, Kuan-Chieh Huang, Jing-En Huang
  • Publication number: 20180138369
    Abstract: A light emitting diode structure including a substrate, a semiconductor epitaxial structure, a first insulating layer, a first reflective layer, a second reflective layer, a second insulating layer and at least one electrode. The substrate has a tilt surface. The semiconductor epitaxial structure at least exposes the tilt surface. The first insulating layer exposes a portion of the semiconductor epitaxial structure. The first reflective layer is at least partially disposed on the portion of the semiconductor epitaxial structure and electrically connected to the semiconductor epitaxial structure. The second reflective layer is disposed on the first reflective layer and the first insulating layer, and covers at least the portion of the tilt surface. The second insulating layer is disposed on the second reflective layer. The electrode is disposed on the second reflective layer and electrically connected to the first reflective layer and the semiconductor epitaxial structure.
    Type: Application
    Filed: January 15, 2018
    Publication date: May 17, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Yu-Yun Lo, Chih-Ling Wu, Jing-En Huang, Shao-Ying Ting
  • Publication number: 20180130926
    Abstract: An LED includes a first-type semiconductor layer, a light emitting layer, a second-type semiconductor layer, a first metal layer, a first current conducting layer, a first bonding layer, and a second current conducting layer. The light emitting layer is located between the first-type semiconductor layer and the second-type semiconductor layer. The first metal layer is located on the first-type semiconductor layer and electrically connected to the first-type semiconductor layer. The first metal layer is located between the first current conducting layer and the first-type semiconductor layer. The first current conducting layer is located between the first bonding layer and the first metal layer. The first bonding layer is electrically connected to the first-type semiconductor layer via the first current conducting layer and the first metal layer. The first bonding layer has through holes overlapping with the first metal layer.
    Type: Application
    Filed: October 6, 2017
    Publication date: May 10, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Sheng-Tsung Hsu, Yu-Chen Kuo, Chih-Ming Shen, Tung-Lin Chuang, Tsung-Syun Huang, Jing-En Huang
  • Publication number: 20180122984
    Abstract: A method for manufacturing a light emitting unit is provided. A semiconductor structure including a plurality of light emitting dice separated from each other is provided. A molding compound is formed to encapsulate the light emitting dice. Each of the light emitting dice includes a light emitting clement, a first electrode and a second electrode. A patterned metal layer is formed on the first electrodes and the second electrodes of the light emitting dice. A substrate is provided, where the molding compound is located between the substrate and the light emitting elements of the light emitting dice. A cutting process is performed to cut the semiconductor structure, the patterned metal layer, the molding compound and the substrate so as to define a light emitting unit with a series connection loop, a parallel connection loop or a series-parallel connection loop.
    Type: Application
    Filed: January 1, 2018
    Publication date: May 3, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Shao-Ying Ting, Kuan-Chieh Huang, Jing-En Huang, Yi-Ru Huang, Sie-Jhan Wu, Long-Lin Ke
  • Publication number: 20180090639
    Abstract: A ?LED including an epitaxial stacked layer, a first electrode and a second electrode is provided. The epitaxial stacked layer includes a first type doped semiconductor layer, a light emitting layer and a second type doped semiconductor layer. The epitaxial stacked layer has a first mesa portion and a second mesa portion to form a first type conductive region and a second type conductive region respectively. The first electrode is disposed on the first mesa portion. The second electrode is disposed on the second mesa portion. The second electrode contacts the first type doped semiconductor layer, the light emitting layer and the second type doped semiconductor layer located at the second mesa portion. Moreover, a manufacturing method of the ?LED is also provided.
    Type: Application
    Filed: August 18, 2017
    Publication date: March 29, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Shao-Ying Ting, Yan-Ting Lan, Jing-En Huang, Yi-Ru Huang
  • Publication number: 20180083168
    Abstract: A light emitting component includes a light emitting unit, a molding compound and a wavelength converting layer. The light emitting unit has a forward light emitting surface. The molding compound covers the light emitting unit. The wavelength converting layer is disposed above the molding compound. The wavelength converting layer has a first surface and a second surface opposite to the first surface, wherein the first surface is located between the forward light emitting surface and the second surface, and at least one of the first and second surfaces is non-planar.
    Type: Application
    Filed: November 27, 2017
    Publication date: March 22, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Kuan-Chieh Huang, Shao-Ying Ting, Jing-En Huang, Yi-Ru Huang
  • Publication number: 20180060603
    Abstract: Embodiments allow, within database security policies, the grant of data change operation-specific privileges to particular users to be applied within particular data realms in a given table. Furthermore, according to one or more embodiments, User Privilege column-level privileges are explicitly associated with one or more data access operations such that the grant of such a column-level privilege allows the user to perform only those data access operations that are explicitly associated with the column-level privilege. Enforcement of the data security policies includes prevention of data leakage via WHERE and RETURNING INTO clauses. According to one or more embodiments, a two-phase rewrite is used to optimize enforcement of column-level privileges. During the two-phase rewrite of a given query, the privileges checked during enforcement of the User Privilege data security policies are pruned to avoid unnecessary privilege checks given the columns that are accessed in the query.
    Type: Application
    Filed: August 31, 2016
    Publication date: March 1, 2018
    Inventors: Tanvir Ahmed, Yi Ru, Chao Liang, Vikram Reddy Pesati
  • Publication number: 20180053742
    Abstract: A method of mass transferring electronic devices includes following steps. A wafer is provided. The wafer includes a substrate and a plurality of electronic devices. The electronic devices are arranged in a matrix on a surface of the substrate. The wafer is attached to a temporary fixing film. The wafer is cut so that the wafer is divided into a plurality of blocks. Each of the blocks includes at least a part of the electronic devices and a sub-substrate. The temporary fixing film is stretched so that the blocks on the temporary fixing film are separated from each other as the temporary fixing film is stretched. At least a part of the blocks is selected as a predetermined bonding portion, and each of the blocks in the predetermined bonding portion is transferred to a carrying substrate in sequence, so that the electronic devices in the predetermined bonding portion arc bonded to the carrying substrate. The sub-substrates of the blocks are removed.
    Type: Application
    Filed: August 18, 2017
    Publication date: February 22, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Shao-Ying Ting, Yan-Ting Lan, Jing-En Huang, Yi-Ru Huang
  • Publication number: 20180019232
    Abstract: A light emitting component includes an epitaxial structure, an adhesive layer, a first reflective layer, a second reflective layer, a block layer, a first electrode and a second electrode. The epitaxial structure includes a substrate, a first semiconductor layer, a light emitting layer and a second semiconductor layer. The adhesive layer is disposed on the second semiconductor layer of the epitaxial structure. The first reflective layer is disposed on the adhesive layer. The second reflective layer is disposed on the first reflective layer and extended onto the adhesive layer. A projection area of the second reflective layer is larger than a projection area of the first reflective layer. The block layer is disposed on the second reflective layer. The first electrode is electrically connected to the first semiconductor layer. The second electrode is electrically connected to the second semiconductor layer.
    Type: Application
    Filed: September 25, 2017
    Publication date: January 18, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Tung-Lin Chuang, Chih-Ming Shen, Sheng-Tsung Hsu, Kuan-Chieh Huang, Jing-En Huang
  • Patent number: 9871169
    Abstract: A light emitting diode structure including a substrate, a semiconductor epitaxial layer and a reflective conductive structure layer is provided. The semiconductor epitaxial layer is disposed on the substrate and exposes a portion of the substrate. The reflective conductive structure layer covers a part of the semiconductor epitaxial layer and the portion of the substrate exposed by the semiconductor epitaxial layer.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: January 16, 2018
    Assignee: GENESIS PHOTONICS INC.
    Inventors: Yi-Ru Huang, Yu-Yun Lo, Chih-Ling Wu, Jing-En Huang, Shao-Ying Ting
  • Patent number: 9859459
    Abstract: A method for manufacturing a light emitting unit is provided. A semiconductor structure including a plurality of light emitting dice separated from each other is provided. A molding compound is formed to encapsulate the light emitting dice. Each of the light emitting dice includes a light emitting element, a first electrode and a second electrode. A patterned metal layer is formed on the first electrodes and the second electrodes of the light emitting dice. A substrate is provided, where the molding compound is located between the substrate and the light emitting elements of the light emitting dice. A cutting process is performed to cut the semiconductor structure, the patterned metal layer, the molding compound and the substrate so as to define a light emitting unit with a series connection loop, a parallel connection loop or a series-parallel connection loop.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: January 2, 2018
    Assignee: Genesis Photonics Inc.
    Inventors: Shao-Ying Ting, Kuan-Chieh Huang, Jing-En Huang, Yi-Ru Huang, Sie-Jhan Wu, Long-Lin Ke
  • Patent number: 9831399
    Abstract: A light emitting component includes a light emitting unit, a molding compound and a wavelength converting layer. The light emitting unit has a forward light emitting surface. The molding compound covers the light emitting unit. The wavelength converting layer is disposed above the molding compound. The wavelength converting layer has a first surface and a second surface opposite to the first surface, wherein the first surface is located between the forward light emitting surface and the second surface, and at least one of the first and second surfaces is non-planar.
    Type: Grant
    Filed: May 30, 2016
    Date of Patent: November 28, 2017
    Assignee: Genesis Photonics Inc.
    Inventors: Kuan-Chieh Huang, Shao-Ying Ting, Jing-En Huang, Yi-Ru Huang