Patents by Inventor Yi-Shin Chu
Yi-Shin Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11824254Abstract: A 3D IC package is provided. The 3D IC package includes: a first IC die comprising a first substrate at a back side of the first IC die; a second IC die stacked at the back side of the first IC die and facing the first substrate; a TSV through the first substrate and electrically connecting the first IC die and the second IC die, the TSV having a TSV cell including a TSV cell boundary surrounding the TSV; and a protection module fabricated in the first substrate, wherein the protection module is electrically connected to the TSV, and the protection module is within the TSV cell.Type: GrantFiled: July 27, 2022Date of Patent: November 21, 2023Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Po-Hsiang Huang, Fong-Yuan Chang, Tsui-Ping Wang, Yi-Shin Chu
-
Publication number: 20230369293Abstract: In some embodiments, the present disclosure relates to a 3D integrated circuit (IC) stack that includes a first IC die bonded to a second IC die. The first IC die includes a first semiconductor substrate, a first interconnect structure arranged on a frontside of the first semiconductor substrate, and a first bonding structure arranged over the first interconnect structure. The second IC die includes a second semiconductor substrate, a second interconnect structure arranged on a frontside of the second semiconductor substrate, and a second bonding structure arranged on a backside of the second semiconductor substrate. The first bonding structure faces the second bonding structure. Further, the 3D IC stack includes a first backside contact that extends from the second bonding structure to the backside of the second semiconductor substrate and is thermally coupled to at least one of the first or second interconnect structures.Type: ApplicationFiled: July 25, 2023Publication date: November 16, 2023Inventors: Min-Feng Kao, Dun-Nian Yaung, Hsing-Chih Lin, Jen-Cheng Liu, Yi-Shin Chu, Ping-Tzu Chen, Che-Wei Chen
-
Publication number: 20230361005Abstract: The present disclosure, in some embodiments, relates to an integrated chip structure. The integrated chip structure includes a first via disposed within a dielectric structure on a substrate, and a second via disposed within the dielectric structure and laterally separated from the first via by the dielectric structure. The first via has a first width that is smaller than a second width of the second via. An interconnect wire vertically contacts the second via and extends laterally past an outermost sidewall of the second via. A through-substrate via (TSV) is arranged over the second via and extends through the substrate. The TSV has a minimum width that is smaller than the second width of the second via. The second via has opposing outermost sidewalls that are laterally outside of the TSV.Type: ApplicationFiled: July 20, 2023Publication date: November 9, 2023Inventors: Min-Feng Kao, Dun-Nian Yaung, Hsing-Chih Lin, Jen-Cheng Liu, Yi-Shin Chu, Ping-Tzu Chen
-
Patent number: 11756862Abstract: The present disclosure, in some embodiments, relates to an integrated chip structure. The integrated chip structure includes a standard contact disposed within a dielectric structure on a substrate. An oversized contact is disposed within the dielectric structure and is laterally separated from the standard contact. The oversized contact has a larger width than the standard contact. An interconnect wire vertically contacts the oversized contact. A through-substrate via (TSV) vertically extends through the substrate. The TSV physically and vertically contacts the oversized contact or the interconnect wire. The TSV vertically overlaps the oversized contact or the interconnect wire over a non-zero distance.Type: GrantFiled: March 16, 2022Date of Patent: September 12, 2023Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Min-Feng Kao, Dun-Nian Yaung, Hsing-Chih Lin, Jen-Cheng Liu, Yi-Shin Chu, Ping-Tzu Chen
-
Patent number: 11756936Abstract: In some embodiments, the present disclosure relates to a 3D integrated circuit (IC) stack that includes a first IC die bonded to a second IC die. The first IC die includes a first semiconductor substrate, a first interconnect structure arranged on a frontside of the first semiconductor substrate, and a first bonding structure arranged over the first interconnect structure. The second IC die includes a second semiconductor substrate, a second interconnect structure arranged on a frontside of the second semiconductor substrate, and a second bonding structure arranged on a backside of the second semiconductor substrate. The first bonding structure faces the second bonding structure. Further, the 3D IC stack includes a first backside contact that extends from the second bonding structure to the backside of the second semiconductor substrate and is thermally coupled to at least one of the first or second interconnect structures.Type: GrantFiled: March 24, 2022Date of Patent: September 12, 2023Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Min-Feng Kao, Dun-Nian Yaung, Hsing-Chih Lin, Jen-Cheng Liu, Yi-Shin Chu, Ping-Tzu Chen, Che-Wei Chen
-
Publication number: 20230207719Abstract: In some embodiments, the present disclosure relates to a single-photon avalanche detector (SPAD) device including a silicon substrate including a recess in an upper surface of the silicon substrate. A p-type region is arranged in the silicon substrate below a lower surface of the recess. An n-type avalanche region is arranged in the silicon substrate below the p-type region and meets the p-type region at a p-n junction. A germanium region is disposed within the recess over the p-n junction.Type: ApplicationFiled: May 20, 2022Publication date: June 29, 2023Inventors: Hung-Chang Chien, Jung-I Lin, Ming-Chieh Hsu, Kuan-Chieh Huang, Tzu-Jui Wang, Shih-Min Huang, Chen-Jong Wang, Dun-Nian Yaung, Yi-Shin Chu, Hsiang-Lin Chen
-
Patent number: 11600737Abstract: Germanium-based sensors are disclosed herein. An exemplary germanium-based sensor includes a germanium photodiode and a junction field effect transistor (JFET) formed from a germanium layer disposed in a silicon substrate, in some embodiments, or on a silicon substrate, in some embodiments. A doped silicon layer, which can be formed by in-situ doping epitaxially grown silicon, is disposed between the germanium layer and the silicon substrate. In embodiments where the germanium layer is on the silicon substrate, the doped silicon layer is disposed between the germanium layer and an oxide layer. The JFET has a doped polysilicon gate, and in some embodiments, a gate diffusion region is disposed in the germanium layer under the doped polysilicon gate. In some embodiments, a pinned photodiode passivation layer is disposed in the germanium layer. In some embodiments, a pair of doped regions in the germanium layer is configured as an e-lens of the germanium-based sensor.Type: GrantFiled: July 23, 2021Date of Patent: March 7, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Jhy-Jyi Sze, Sin-Yi Jiang, Yi-Shin Chu, Yin-Kai Liao, Hsiang-Lin Chen, Kuan-Chieh Huang
-
Publication number: 20230069164Abstract: A semiconductor image sensor includes a first substrate including a first front side and a first back side, a second substrate including a second front side and a second back side, a third substrate including a third front side and a third back side, a first interconnect structure, and a second interconnect structure. The first substrate includes a layer and a first light-sensing element in the layer. The layer includes a first semiconductor material, and the first light-sensing element includes a second semiconductor material. The second substrate is bonded to the first substrate with the second front side facing the first back side. The third substrate is bonded to the first substrate with the third front side facing the first front side. The first interconnect structure and the second interconnect structure are disposed between the first front side and the third front side.Type: ApplicationFiled: August 30, 2021Publication date: March 2, 2023Inventors: JHY-JYI SZE, YI-SHIN CHU, YIN-KAI LIAO, HSIANG-LIN CHEN, SIN-YI JIANG, KUAN-CHIEH HUANG
-
Patent number: 11552027Abstract: Various embodiments of the present application are directed towards a semiconductor packaging device including a shield structure configured to block magnetic and/or electric fields from a first electronic component and a second electronic component. The first and second electronic components may, for example, be inductors or some other suitable electronic components. In some embodiments, a first IC chip overlies a second IC chip. The first IC chip includes a first substrate and a first interconnect structure overlying the first substrate. The second IC chip includes a second substrate and a second interconnect structure overlying the second substrate. The first and second electronic components are respectively in the first and second interconnect structures. The shield structure is directly between the first and second electronic components.Type: GrantFiled: June 7, 2021Date of Patent: January 10, 2023Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Wei-Yu Chien, Chien-Hsien Tseng, Dun-Nian Yaung, Nai-Wen Cheng, Pao-Tung Chen, Yi-Shin Chu, Yu-Yang Shen
-
Patent number: 11508817Abstract: The present disclosure relates to an integrated chip. The integrated chip includes a substrate having a first semiconductor material. A second semiconductor material is disposed on the first semiconductor material. The second semiconductor material is a group IV semiconductor or a group III-V compound semiconductor. A passivation layer is disposed on the second semiconductor material. The passivation layer includes the first semiconductor material. A first doped region and a second doped region extend through the passivation layer and into the second semiconductor material.Type: GrantFiled: September 29, 2020Date of Patent: November 22, 2022Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Yin-Kai Liao, Sin-Yi Jiang, Hsiang-Lin Chen, Yi-Shin Chu, Po-Chun Liu, Kuan-Chieh Huang, Jyh-Ming Hung, Jen-Cheng Liu
-
Publication number: 20220367638Abstract: The present disclosure relates to an integrated chip. The integrated chip includes a substrate having a first semiconductor material. A second semiconductor material is disposed on the first semiconductor material. The second semiconductor material is a group IV semiconductor or a group III-V compound semiconductor. A passivation layer is disposed on the second semiconductor material. The passivation layer includes the first semiconductor material. A first doped region and a second doped region extend through the passivation layer and into the second semiconductor material.Type: ApplicationFiled: July 21, 2022Publication date: November 17, 2022Inventors: Yin-Kai Liao, Sin-Yi Jiang, Hsiang-Lin Chen, Yi-Shin Chu, Po-Chun Liu, Kuan-Chieh Huang, Jyh-Ming Hung, Jen-Cheng Liu
-
Publication number: 20220368004Abstract: A 3D IC package is provided. The 3D IC package includes: a first IC die comprising a first substrate at a back side of the first IC die; a second IC die stacked at the back side of the first IC die and facing the first substrate; a TSV through the first substrate and electrically connecting the first IC die and the second IC die, the TSV having a TSV cell including a TSV cell boundary surrounding the TSV; and a protection module fabricated in the first substrate, wherein the protection module is electrically connected to the TSV, and the protection module is within the TSV cell.Type: ApplicationFiled: July 27, 2022Publication date: November 17, 2022Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Po-Hsiang Huang, Fong-Yuan Chang, Tsui-Ping Wang, Yi-Shin Chu
-
Publication number: 20220310871Abstract: A method of manufacturing a semiconductor structure includes: forming a light-absorption layer in a substrate; forming a first doped region of a first conductivity type and a second doped region of a second conductivity type in the light-absorption layer adjacent to the first doped region; depositing a first patterned mask layer over the light-absorption layer, wherein the first patterned mask layer includes an opening exposing the second doped region and covers the first doped region; forming a first silicide layer in the opening on the second doped region; depositing a barrier layer over the first doped region; and annealing the barrier layer to form a second silicide layer on the first doped region.Type: ApplicationFiled: March 26, 2021Publication date: September 29, 2022Inventors: YI-SHIN CHU, HSIANG-LIN CHEN, YIN-KAI LIAO, SIN-YI JIANG, KUAN-CHIEH HUANG
-
Publication number: 20220302336Abstract: Germanium-based sensors are disclosed herein. An exemplary germanium-based sensor includes a germanium photodiode and a junction field effect transistor (JFET) formed from a germanium layer disposed in a silicon substrate, in some embodiments, or on a silicon substrate, in some embodiments. A doped silicon layer, which can be formed by in-situ doping epitaxially grown silicon, is disposed between the germanium layer and the silicon substrate. In embodiments where the germanium layer on the silicon substrate, the doped silicon layer is disposed between the germanium layer and an oxide layer. The JFET has a doped polysilicon gate, and in some embodiments, a gate diffusion region is disposed in the germanium layer under the doped polysilicon gate. In some embodiments, a pinned photodiode passivation layer is disposed in the germanium layer. In some embodiments, a pair doped region pair in the germanium layer is configured as an e-lens of the germanium-based sensor.Type: ApplicationFiled: July 23, 2021Publication date: September 22, 2022Inventors: Jhy-Jyi Sze, Sin-Yi Jiang, Yi-Shin Chu, Yin-Kai Liao, Hsiang-Lin Chen, Kuan-Chieh Huang
-
Patent number: 11437708Abstract: A 3D IC package is provided. The 3D IC package includes: a first IC die comprising a first substrate at a back side of the first IC die; a second IC die stacked at the back side of the first IC die and facing the first substrate; a TSV through the first substrate and electrically connecting the first IC die and the second IC die, the TSV having a TSV cell including a TSV cell boundary surrounding the TSV; and a protection module fabricated in the first substrate, wherein the protection module is electrically connected to the TSV, and the protection module is within the TSV cell.Type: GrantFiled: January 15, 2021Date of Patent: September 6, 2022Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Po-Hsiang Huang, Fong-Yuan Chang, Tsui-Ping Wang, Yi-Shin Chu
-
Publication number: 20220271080Abstract: The present disclosure provides a semiconductor structure, including a substrate including a first material, wherein the first material generates electrical signals from radiation within a first range of wavelengths, an image sensor element including a second material, wherein the second material generates electrical signals from radiation within a second range of wavelengths, the second range is different from first range, a transparent layer proximal to a light receiving surface of the image sensor element, wherein the transparent layer is transparent to radiation within the second range of wavelength, and an interconnect structure connected to a signal transmitting surface of the image sensor element.Type: ApplicationFiled: February 25, 2021Publication date: August 25, 2022Inventors: JHY-JYI SZE, SIN-YI JIANG, YI-SHIN CHU, YIN-KAI LIAO, HSIANG-LIN CHEN, KUAN-CHIEH HUANG, JUNG-I LIN
-
Patent number: 11387167Abstract: Present disclosure provides a semiconductor structure, including a semiconductor substrate, a first metal layer, and a through substrate via (TSV). The semiconductor substrate has an active side. The first metal layer is closest to the active side of the semiconductor substrate, and the first metal layer has a first continuous metal feature. The TSV is extending from the semiconductor substrate to the first continuous metal feature. A width of the TSV at the first metal layer is wider than a width of the first continuous metal feature. Present disclosure also provides a method for manufacturing the semiconductor structure described herein.Type: GrantFiled: July 3, 2020Date of Patent: July 12, 2022Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Ching-Chun Wang, Kuan-Chieh Huang, Hsing-Chih Lin, Yi-Shin Chu
-
Publication number: 20220216185Abstract: In some embodiments, the present disclosure relates to a 3D integrated circuit (IC) stack that includes a first IC die bonded to a second IC die. The first IC die includes a first semiconductor substrate, a first interconnect structure arranged on a frontside of the first semiconductor substrate, and a first bonding structure arranged over the first interconnect structure. The second IC die includes a second semiconductor substrate, a second interconnect structure arranged on a frontside of the second semiconductor substrate, and a second bonding structure arranged on a backside of the second semiconductor substrate. The first bonding structure faces the second bonding structure. Further, the 3D IC stack includes a first backside contact that extends from the second bonding structure to the backside of the second semiconductor substrate and is thermally coupled to at least one of the first or second interconnect structures.Type: ApplicationFiled: March 24, 2022Publication date: July 7, 2022Inventors: Min-Feng Kao, Dun-Nian Yaung, Hsing-Chih Lin, Jen-Cheng Liu, Yi-Shin Chu, Ping-Tzu Chen, Che-Wei Chen
-
Publication number: 20220208651Abstract: The present disclosure, in some embodiments, relates to an integrated chip structure. The integrated chip structure includes a standard contact disposed within a dielectric structure on a substrate. An oversized contact is disposed within the dielectric structure and is laterally separated from the standard contact. The oversized contact has a larger width than the standard contact. An interconnect wire vertically contacts the oversized contact. A through-substrate via (TSV) vertically extends through the substrate. The TSV physically and vertically contacts the oversized contact or the interconnect wire. The TSV vertically overlaps the oversized contact or the interconnect wire over a non-zero distance.Type: ApplicationFiled: March 16, 2022Publication date: June 30, 2022Inventors: Min-Feng Kao, Dun-Nian Yaung, Hsing-Chih Lin, Jen-Cheng Liu, Yi-Shin Chu, Ping-Tzu Chen
-
Publication number: 20220102410Abstract: Various embodiments of the present disclosure are directed towards an image sensor with a passivation layer for dark current reduction. A device layer overlies a substrate. Further, a cap layer overlies the device layer. The cap and device layers and the substrate are semiconductor materials, and the device layer has a smaller bandgap than the cap layer and the substrate. For example, the cap layer and the substrate may be silicon, whereas the device layer may be or comprise germanium. A photodetector is in the device and cap layers, and the passivation layer overlies the cap layer. The passivation layer comprises a high k dielectric material and induces formation of a dipole moment along a top surface of the cap layer.Type: ApplicationFiled: February 17, 2021Publication date: March 31, 2022Inventors: Hsiang-Lin Chen, Yi-Shin Chu, Yin-Kai Liao, Sin-Yi Jiang, Kuan-Chieh Huang, Jhy-Jyi Sze