Patents by Inventor Yi-Shin Chu
Yi-Shin Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20220208651Abstract: The present disclosure, in some embodiments, relates to an integrated chip structure. The integrated chip structure includes a standard contact disposed within a dielectric structure on a substrate. An oversized contact is disposed within the dielectric structure and is laterally separated from the standard contact. The oversized contact has a larger width than the standard contact. An interconnect wire vertically contacts the oversized contact. A through-substrate via (TSV) vertically extends through the substrate. The TSV physically and vertically contacts the oversized contact or the interconnect wire. The TSV vertically overlaps the oversized contact or the interconnect wire over a non-zero distance.Type: ApplicationFiled: March 16, 2022Publication date: June 30, 2022Inventors: Min-Feng Kao, Dun-Nian Yaung, Hsing-Chih Lin, Jen-Cheng Liu, Yi-Shin Chu, Ping-Tzu Chen
-
Publication number: 20220102410Abstract: Various embodiments of the present disclosure are directed towards an image sensor with a passivation layer for dark current reduction. A device layer overlies a substrate. Further, a cap layer overlies the device layer. The cap and device layers and the substrate are semiconductor materials, and the device layer has a smaller bandgap than the cap layer and the substrate. For example, the cap layer and the substrate may be silicon, whereas the device layer may be or comprise germanium. A photodetector is in the device and cap layers, and the passivation layer overlies the cap layer. The passivation layer comprises a high k dielectric material and induces formation of a dipole moment along a top surface of the cap layer.Type: ApplicationFiled: February 17, 2021Publication date: March 31, 2022Inventors: Hsiang-Lin Chen, Yi-Shin Chu, Yin-Kai Liao, Sin-Yi Jiang, Kuan-Chieh Huang, Jhy-Jyi Sze
-
Patent number: 11289455Abstract: In some embodiments, the present disclosure relates to a 3D integrated circuit (IC) stack that includes a first IC die bonded to a second IC die. The first IC die includes a first semiconductor substrate, a first interconnect structure arranged on a frontside of the first semiconductor substrate, and a first bonding structure arranged over the first interconnect structure. The second IC die includes a second semiconductor substrate, a second interconnect structure arranged on a frontside of the second semiconductor substrate, and a second bonding structure arranged on a backside of the second semiconductor substrate. The first bonding structure faces the second bonding structure. Further, the 3D IC stack includes a first backside contact that extends from the second bonding structure to the backside of the second semiconductor substrate and is thermally coupled to at least one of the first or second interconnect structures.Type: GrantFiled: June 11, 2020Date of Patent: March 29, 2022Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Min-Feng Kao, Dun-Nian Yaung, Hsing-Chih Lin, Jen-Cheng Liu, Yi-Shin Chu, Ping-Tzu Chen, Che-Wei Chen
-
Patent number: 11282769Abstract: The present disclosure, in some embodiments, relates to an integrated chip structure. The integrated chip structure includes a standard via disposed on a first side of a substrate. An oversized via is disposed on the first side of the substrate and is laterally separated from the standard via. The oversized via has a larger width than the standard via. An interconnect wire vertically contacting the oversized via. A through-substrate via (TSV) extends from a second side of the substrate, and through the substrate, to physically contact the oversized via or the interconnect wire. The TSV has a minimum width that is smaller than a width of the oversized via.Type: GrantFiled: June 11, 2020Date of Patent: March 22, 2022Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Min-Feng Kao, Dun-Nian Yaung, Hsing-Chih Lin, Jen-Cheng Liu, Yi-Shin Chu, Ping-Tzu Chen
-
Publication number: 20220037552Abstract: A method and structure providing an optical sensor having an optimized Ge—Si interface includes providing a substrate having a pixel region and a logic region. In some embodiments, the method further includes forming a trench within the pixel region. In various examples, and after forming the trench, the method further includes forming a doped semiconductor layer along sidewalls and along a bottom surface of the trench. In some embodiments, the method further includes forming a germanium layer within the trench and over the doped semiconductor layer. In some examples, and after forming the germanium layer, the method further includes forming an optical sensor within the germanium layer.Type: ApplicationFiled: June 2, 2021Publication date: February 3, 2022Inventors: Yin-Kai LIAO, Jen-Cheng LIU, Kuan-Chieh HUANG, Chih-Ming HUNG, Yi-Shin CHU, Hsiang-Lin CHEN, Sin-Yi JIANG
-
Publication number: 20210391302Abstract: In some embodiments, the present disclosure relates to a 3D integrated circuit (IC) stack that includes a first IC die bonded to a second IC die. The first IC die includes a first semiconductor substrate, a first interconnect structure arranged on a frontside of the first semiconductor substrate, and a first bonding structure arranged over the first interconnect structure. The second IC die includes a second semiconductor substrate, a second interconnect structure arranged on a frontside of the second semiconductor substrate, and a second bonding structure arranged on a backside of the second semiconductor substrate. The first bonding structure faces the second bonding structure. Further, the 3D IC stack includes a first backside contact that extends from the second bonding structure to the backside of the second semiconductor substrate and is thermally coupled to at least one of the first or second interconnect structures.Type: ApplicationFiled: June 11, 2020Publication date: December 16, 2021Inventors: Min-Feng Kao, Dun-Nian Yaung, Hsing-Chih Lin, Jen-Cheng Liu, Yi-Shin Chu, Ping-Tzu Chen, Che-Wei Chen
-
Publication number: 20210391237Abstract: The present disclosure, in some embodiments, relates to an integrated chip structure. The integrated chip structure includes a standard via disposed on a first side of a substrate. An oversized via is disposed on the first side of the substrate and is laterally separated from the standard via. The oversized via has a larger width than the standard via. An interconnect wire vertically contacting the oversized via. A through-substrate via (TSV) extends from a second side of the substrate, and through the substrate, to physically contact the oversized via or the interconnect wire. The TSV has a minimum width that is smaller than a width of the oversized via.Type: ApplicationFiled: June 11, 2020Publication date: December 16, 2021Inventors: Min-Feng Kao, Dun-Nian Yaung, Hsing-Chih Lin, Jen-Cheng Liu, Yi-Shin Chu, Ping-Tzu Chen
-
Publication number: 20210376086Abstract: The present disclosure relates to an integrated chip. The integrated chip includes a substrate having a first semiconductor material. A second semiconductor material is disposed on the first semiconductor material. The second semiconductor material is a group IV semiconductor or a group III-V compound semiconductor. A passivation layer is disposed on the second semiconductor material. The passivation layer includes the first semiconductor material. A first doped region and a second doped region extend through the passivation layer and into the second semiconductor material.Type: ApplicationFiled: September 29, 2020Publication date: December 2, 2021Inventors: Yin-Kai Liao, Sin-Yi Jiang, Hsiang-Lin Chen, Yi-Shin Chu, Po-Chun Liu, Kuan-Chieh Huang, Jyh-Ming Hung, Jen-Cheng Liu
-
Publication number: 20210305678Abstract: A 3D IC package is provided. The 3D IC package includes: a first IC die comprising a first substrate at a back side of the first IC die; a second IC die stacked at the back side of the first IC die and facing the first substrate; a TSV through the first substrate and electrically connecting the first IC die and the second IC die, the TSV having a TSV cell including a TSV cell boundary surrounding the TSV; and a protection module fabricated in the first substrate, wherein the protection module is electrically connected to the TSV, and the protection module is within the TSV cell.Type: ApplicationFiled: January 15, 2021Publication date: September 30, 2021Inventors: Po-Hsiang Huang, Fong-Yuan Chang, Tsui-Ping Wang, Yi-Shin Chu
-
Publication number: 20210296258Abstract: Various embodiments of the present application are directed towards a semiconductor packaging device including a shield structure configured to block magnetic and/or electric fields from a first electronic component and a second electronic component. The first and second electronic components may, for example, be inductors or some other suitable electronic components. In some embodiments, a first IC chip overlies a second IC chip. The first IC chip includes a first substrate and a first interconnect structure overlying the first substrate. The second IC chip includes a second substrate and a second interconnect structure overlying the second substrate. The first and second electronic components are respectively in the first and second interconnect structures. The shield structure is directly between the first and second electronic components.Type: ApplicationFiled: June 7, 2021Publication date: September 23, 2021Inventors: Wei-Yu Chien, Chien-Hsien Tseng, Dun-Nian Yaung, Nai-Wen Cheng, Pao-Tung Chen, Yi-Shin Chu, Yu-Yang Shen
-
Patent number: 11037885Abstract: Various embodiments of the present application are directed towards a semiconductor packaging device including a shield structure configured to block magnetic and/or electric fields from a first electronic component and a second electronic component. The first and second electronic components may, for example, be inductors or some other suitable electronic components. In some embodiments, a first IC chip overlies a second IC chip. The first IC chip includes a first substrate and a first interconnect structure overlying the first substrate. The second IC chip includes a second substrate and a second interconnect structure overlying the second substrate. The first and second electronic components are respectively in the first and second interconnect structures. The shield structure is directly between the first and second electronic components.Type: GrantFiled: August 12, 2019Date of Patent: June 15, 2021Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Wei-Yu Chien, Chien-Hsien Tseng, Dun-Nian Yaung, Nai-Wen Cheng, Pao-Tung Chen, Yi-Shin Chu, Yu-Yang Shen
-
Publication number: 20210050303Abstract: Various embodiments of the present application are directed towards a semiconductor packaging device including a shield structure configured to block magnetic and/or electric fields from a first electronic component and a second electronic component. The first and second electronic components may, for example, be inductors or some other suitable electronic components. In some embodiments, a first IC chip overlies a second IC chip. The first IC chip includes a first substrate and a first interconnect structure overlying the first substrate. The second IC chip includes a second substrate and a second interconnect structure overlying the second substrate. The first and second electronic components are respectively in the first and second interconnect structures. The shield structure is directly between the first and second electronic components.Type: ApplicationFiled: August 12, 2019Publication date: February 18, 2021Inventors: Wei-Yu Chien, Chien-Hsien Tseng, Dun-Nian Yaung, Nai-Wen Cheng, Pao-Tung Chen, Yi-Shin Chu, Yu-Yang Shen
-
Publication number: 20200335427Abstract: Present disclosure provides a semiconductor structure, including a semiconductor substrate, a first metal layer, and a through substrate via (TSV). The semiconductor substrate has an active side. The first metal layer is closest to the active side of the semiconductor substrate, and the first metal layer has a first continuous metal feature. The TSV is extending from the semiconductor substrate to the first continuous metal feature. A width of the TSV at the first metal layer is wider than a width of the first continuous metal feature. Present disclosure also provides a method for manufacturing the semiconductor structure described herein.Type: ApplicationFiled: July 3, 2020Publication date: October 22, 2020Inventors: MIN-FENG KAO, DUN-NIAN YAUNG, JEN-CHENG LIU, CHING-CHUN WANG, KUAN-CHIEH HUANG, HSING-CHIH LIN, YI-SHIN CHU
-
Patent number: 10777539Abstract: A three-dimensional (3D) integrated circuit (IC) die is provided. In some embodiments, a first IC die comprises a first semiconductor substrate, a first interconnect structure over the first semiconductor substrate, and a first hybrid bond (HB) structure over the first interconnect structure. The first HB structure comprises a HB link layer and a HB contact layer extending from the HB link layer to the first interconnect structure. A second IC die is over the first IC die, and comprises a second semiconductor substrate, a second HB structure, and a second interconnect structure between the second semiconductor substrate and the second HB structure. The second HB structure contacts the first HB structure. A seal-ring structure is in the first and second IC dies. Further, the seal-ring structure extends from the first semiconductor substrate to the second semiconductor substrate, and is defined in part by the HB contact layer.Type: GrantFiled: September 26, 2019Date of Patent: September 15, 2020Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Yi-Shin Chu, Kuan-Chieh Huang, Pao-Tung Chen, Shuang-Ji Tsai, Yi-Hao Chen, Feng-Kuei Chang
-
Patent number: 10727164Abstract: Present disclosure provides a semiconductor structure, including a semiconductor substrate having an active side, an interconnect layer in proximity to the active side of the semiconductor substrate, and a through substrate via extending from the semiconductor substrate to a first metal layer of the interconnect layer. The TSV being wider than the continuous metal feature. Present disclosure also provides a method for manufacturing the semiconductor structure described herein.Type: GrantFiled: December 20, 2018Date of Patent: July 28, 2020Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Ching-Chun Wang, Kuan-Chieh Huang, Hsing-Chih Lin, Yi-Shin Chu
-
Publication number: 20200027860Abstract: A three-dimensional (3D) integrated circuit (IC) die is provided. In some embodiments, a first IC die comprises a first semiconductor substrate, a first interconnect structure over the first semiconductor substrate, and a first hybrid bond (HB) structure over the first interconnect structure. The first HB structure comprises a HB link layer and a HB contact layer extending from the HB link layer to the first interconnect structure. A second IC die is over the first IC die, and comprises a second semiconductor substrate, a second HB structure, and a second interconnect structure between the second semiconductor substrate and the second HB structure. The second HB structure contacts the first HB structure. A seal-ring structure is in the first and second IC dies. Further, the seal-ring structure extends from the first semiconductor substrate to the second semiconductor substrate, and is defined in part by the HB contact layer.Type: ApplicationFiled: September 26, 2019Publication date: January 23, 2020Inventors: Yi-Shin Chu, Kuan-Chieh Huang, Pao-Tung Chen, Shuang-Ji Tsai, Yi-Hao Chen, Feng-Kuei Chang
-
Patent number: 10510791Abstract: A device includes an image sensor chip having formed therein an elevated photodiode, and a device chip underlying and bonded to the image sensor chip. The device chip has a read out circuit electrically connected to the elevated photodiode.Type: GrantFiled: August 27, 2018Date of Patent: December 17, 2019Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Meng-Hsun Wan, Yi-Shin Chu, Szu-Ying Chen, Pao-Tung Chen, Jen-Cheng Liu, Dun-Nian Yaung
-
Patent number: 10475772Abstract: A three-dimensional (3D) integrated circuit (IC) die is provided. In some embodiments, a first IC die comprises a first semiconductor substrate, a first interconnect structure over the first semiconductor substrate, and a first hybrid bond (HB) structure over the first interconnect structure. The first HB structure comprises a HB link layer and a HB contact layer extending from the HB link layer to the first interconnect structure. A second IC die is over the first IC die, and comprises a second semiconductor substrate, a second HB structure, and a second interconnect structure between the second semiconductor substrate and the second HB structure. The second HB structure contacts the first HB structure. A seal-ring structure is in the first and second IC dies. Further, the seal-ring structure extends from the first semiconductor substrate to the second semiconductor substrate, and is defined in part by the HB contact layer.Type: GrantFiled: December 11, 2018Date of Patent: November 12, 2019Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Yi-Shin Chu, Kuan-Chieh Huang, Pao-Tung Chen, Shuang-Ji Tsai, Yi-Hao Chen, Feng-Kuei Chang
-
Publication number: 20190148266Abstract: Present disclosure provides a semiconductor structure, including a semiconductor substrate having an active side, an interconnect layer in proximity to the active side of the semiconductor substrate, and a through substrate via extending from the semiconductor substrate to a first metal layer of the interconnect layer. The TSV being wider than the continuous metal feature. Present disclosure also provides a method for manufacturing the semiconductor structure described herein.Type: ApplicationFiled: December 20, 2018Publication date: May 16, 2019Inventors: MIN-FENG KAO, DUN-NIAN YAUNG, JEN-CHENG LIU, CHING-CHUN WANG, KUAN-CHIEH HUANG, HSING-CHIH LIN, YI-SHIN CHU
-
Publication number: 20190109121Abstract: A three-dimensional (3D) integrated circuit (IC) die is provided. In some embodiments, a first IC die comprises a first semiconductor substrate, a first interconnect structure over the first semiconductor substrate, and a first hybrid bond (HB) structure over the first interconnect structure. The first HB structure comprises a HB link layer and a HB contact layer extending from the HB link layer to the first interconnect structure. A second IC die is over the first IC die, and comprises a second semiconductor substrate, a second HB structure, and a second interconnect structure between the second semiconductor substrate and the second HB structure. The second HB structure contacts the first HB structure. A seal-ring structure is in the first and second IC dies. Further, the seal-ring structure extends from the first semiconductor substrate to the second semiconductor substrate, and is defined in part by the HB contact layer.Type: ApplicationFiled: December 11, 2018Publication date: April 11, 2019Inventors: Yi-Shin Chu, Kuan-Chieh Huang, Pao-Tung Chen, Shuang-Ji Tsai, Yi-Hao Chen, Feng-Kuei Chang