Patents by Inventor Yi-Wei Chiu

Yi-Wei Chiu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10079178
    Abstract: Formation methods of a semiconductor device structure are provided. The method includes forming a bottom layer, a middle layer and an upper layer over a substrate, developing the upper layer to form an upper pattern with a first opening exposing the middle layer and a sidewall of the upper pattern. The upper pattern has a top surface. The method further includes conformally forming a protective layer over the upper pattern and the exposed middle layer, anisotropically etching the protective layer to leave a portion of the protective layer over the sidewall of the upper pattern and expose the middle layer, etching the middle layer not covered by the upper pattern and the portion of the protective layer to form a middle pattern with a second opening exposing the bottom layer, and etching the bottom layer though the second opening of the middle pattern.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: September 18, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Po-Ju Chen, Yi-Wei Chiu, Fang-Yi Wu, Chih-Hao Chen, Wen-Yen Chen
  • Patent number: 10074563
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a gate stack over a semiconductor substrate and a spacer element over a sidewall of the gate stack. The spacer element is substantially free of oxygen. The semiconductor device structure also includes a dielectric layer over the semiconductor substrate, and the dielectric layer surrounds the gate stack and the spacer element. The semiconductor device structure further includes a conductive contact penetrating through the dielectric layer and electrically connected to a conductive feature over the semiconductor substrate. An angle between a sidewall of the conductive contact and a top surface of the spacer element is in a range from about 90 degrees to about 120 degrees, and the conductive contact covers a portion of the spacer element.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: September 11, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hua-Li Hung, Chih-Lun Lu, Hsu-Yu Huang, Tsung-Fan Yin, Ying-Ting Hsia, Yi-Wei Chiu, Li-Te Hsu
  • Patent number: 10037918
    Abstract: A method includes forming a first transistor and a second transistor over a substrate, wherein the first transistor and the second transistor share a drain/source region formed between a first gate of the first transistor and a second gate of the second transistor, forming a first opening in an interlayer dielectric layer and between the first gate and the second gate, depositing an etch stop layer in the first opening and on a top surface of the interlayer dielectric layer, depositing a dielectric layer over the etch stop layer, applying a first etching process to the dielectric layer until the etch stop layer is exposed, performing a second etching process on the etch stop layer until an exposed portion of the etch stop layer and portions of the dielectric layer have been removed.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: July 31, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wan Hsuan Hsu, I-Hsiu Wang, Yean-Zhaw Chen, Cheng-Wei Chang, Yu Shih Wang, Hsin-Yan Lu, Yi-Wei Chiu
  • Patent number: 10032661
    Abstract: A semiconductor device, method, and tool of manufacture includes a semiconductor manufacturing tool. The semiconductor manufacturing tool includes push pins in a chuck and an edge ring over the chuck. The push pins are configured to hold a wafer, and are operable to vary a height of the wafer with respect to the chuck. The edge ring has a first width at a base proximate the chuck, and a second width at a point distal the chuck. The first width is greater than the second width. A distance from the wafer to the edge ring varies when the push pins vary the height of the wafer with respect to the chuck.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: July 24, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Meng-Je Chuang, Yu-Lin Sung, Yi-Wei Chiu, Tzu-Chan Weng
  • Patent number: 10020379
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a mandrel masking structure over a target layer. The method also includes patterning the mandrel masking structure to form mandrel lines parallel to each other, and forming spacer structures on sidewalls of the respective mandrel lines to define first openings. Each of the spacer structures includes a first spacer and a second spacer between the first spacer and the corresponding mandrel line. The method also includes removing the mandrel lines to define second openings, and etching the target layer through the first and second openings to form a target pattern therein.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: July 10, 2018
    Assignee: Taiwan Semiconuctor Manufacturing Co., Ltd.
    Inventors: Po-Ju Chen, Yi-Wei Chiu
  • Publication number: 20180174915
    Abstract: A method of manufacturing a semiconductor device includes forming a first layer of a conductive material in gate spaces created by removing portions of a dummy gate structure. The first layer further includes a top layer on an entire structure formed on a fin structure, and a gate space for a short channel gate and a gate space for a long channel gate. A first portion of the top layer is removed to leave a hard mask layer over a long channel gate region. The hard mask layer and a portion of heights of the conductive material in the gate spaces are removed to form a first structure. A second layer of the conductive material is formed over the first structure. Portions of the second layer are removed to create a recessed conductive portion for the short channel gate and a recessed conductive portion for the long channel gate.
    Type: Application
    Filed: November 27, 2017
    Publication date: June 21, 2018
    Inventors: Chia-Ching TSAI, Yi-Wei CHIU, Li-Te HSU
  • Publication number: 20180174904
    Abstract: A method includes forming a bottom source/drain contact plug in a bottom inter-layer dielectric. The bottom source/drain contact plug is electrically coupled to a source/drain region of a transistor. The method further includes forming an inter-layer dielectric overlying the bottom source/drain contact plug. A source/drain contact opening is formed in the inter-layer dielectric, with the bottom source/drain contact plug exposed through the source/drain contact opening. A dielectric spacer layer is formed to have a first portion extending into the source/drain contact opening and a second portion over the inter-layer dielectric. An anisotropic etching is performed on the dielectric spacer layer, and a remaining vertical portion of the dielectric spacer layer forms a source/drain contact spacer. The remaining portion of the source/drain contact opening is filled to form an upper source/drain contact plug.
    Type: Application
    Filed: December 21, 2016
    Publication date: June 21, 2018
    Inventors: Yi-Tsang Hsieh, Cha-Hsin Chao, Yi-Wei Chiu, Li-Te Hsu, Ying Ting Hsia
  • Publication number: 20180174829
    Abstract: A cleaning apparatus and a method of using the cleaning apparatus are provided. The method includes first moving a pencil pad into contact with a top surface of a wafer, wherein the pencil pad is connected to a pivot arm and second moving the pivot arm in a sweeping motion from a first zone to a second zone, the first zone being closer to a center of the top surface of the wafer than the second zone, wherein the sweeping motion is controlled by a controller, the pivot arm moves at a first speed in the first zone and the pivot arm moves at a second speed in the second zone, wherein the first speed is different from the second speed.
    Type: Application
    Filed: May 23, 2017
    Publication date: June 21, 2018
    Inventors: Kaw-Wei Kuo, Chun-Hao Kung, Kuo-Feng Huang, Yi-Wei Chiu, Wei-Chun Chen
  • Publication number: 20180166321
    Abstract: The present disclosure relates to a semiconductor device and a manufacturing method, and more particularly to a semiconductor device having reduced trench loading effect. The present disclosure provides a novel multi-layer cap film incorporating one or more oxygen-based layers for reducing trench loading effects in semiconductor devices. The multi-layer cap film can be made of a metal hard mask layer and one or more oxygen-based layers. The metal hard mask layer can be formed of titanium nitride (TiN). The oxygen-based layer can be formed of tetraethyl orthosilicate (TEOS).
    Type: Application
    Filed: August 8, 2017
    Publication date: June 14, 2018
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Kai SUN, Yi-Wei Chiu, Hung Jui Chang, Chia-Ching Tsai
  • Publication number: 20180166332
    Abstract: In a method for manufacturing a semiconductor device, a first interlayer dielectric layer is formed over a substrate. First recesses are formed in the first interlayer dielectric layer. First metal wirings are formed in the first recesses. A first etch-resistance layer is formed in a surface of the first interlayer dielectric layer between the first metal wirings but not on upper surfaces of the first metal wirings. A first insulating layer is formed on the first etch-resistance layer and the upper surfaces of the first metal wirings.
    Type: Application
    Filed: January 24, 2018
    Publication date: June 14, 2018
    Inventors: Jeng Chang HER, Cha-Hsin CHAO, Yi-Wei CHIU, Li-Te HSU, Ying Ting HSIA
  • Publication number: 20180151335
    Abstract: A plasma processing apparatus is provided. The apparatus includes a lower sheltering module. The apparatus further includes an upper sheltering module arranged adjacent to the lower sheltering module. The apparatus includes an upper plate and an upper PEZ ring positioned around the upper plate. The apparatus also includes a shadowing unit that includes a number of engaging parts in the form of arcs detachably positioned on the upper PEZ ring. In addition, the apparatus includes a plasma generation module for generating plasma in the peripheral region of the lower sheltering module and the upper sheltering module.
    Type: Application
    Filed: May 11, 2017
    Publication date: May 31, 2018
    Inventors: Chun-Hsing WU, Hung-Jui CHANG, Chih-Ching CHENG, Yi-Wei CHIU, Kun-Cheng CHEN
  • Publication number: 20180151446
    Abstract: A method of manufacturing a semiconductor device includes forming a semiconductor strip protruding above a substrate, forming isolation regions on opposing sides of the semiconductor strip, recessing the isolation regions in a first chamber using a first etching process, and increasing a planarity of the isolation regions in the first chamber using a second etching process.
    Type: Application
    Filed: November 29, 2016
    Publication date: May 31, 2018
    Inventors: Tzu-Chan Weng, Wan-Chun Kuan, Yi-Wei Chiu, Meng-Je Chuang
  • Publication number: 20180151353
    Abstract: A method includes etching a first oxide layer in a wafer. The etching is performed in an etcher having a top plate overlapping the wafer, and the top plate is formed of a non-oxygen-containing material. The method further includes etching a nitride layer underlying the first oxide layer in the etcher until a top surface of a second oxide layer underlying the nitride layer is exposed. The wafer is then removed from the etcher, with the top surface of the second oxide layer exposed when the wafer is removed.
    Type: Application
    Filed: October 5, 2017
    Publication date: May 31, 2018
    Inventors: En-Ping Lin, Yi-Wei Chiu, Tzu-Chan Weng, Wen-Zhong Ho
  • Publication number: 20180151718
    Abstract: A finFET device and a method of forming are provided. The device includes a transistor comprising a gate electrode and a first source/drain region next to the gate electrode, the gate electrode being disposed over a first substrate. The device also includes a first dielectric layer extending along the first source/drain region, and a second dielectric layer overlying the first dielectric layer. The device also includes a contact disposed in the first dielectric layer and in the second dielectric layer, the contact contacting the gate electrode and the first source/drain region. A first portion of the first dielectric layer extends between the contact and the gate electrode. The contact extends along a sidewall of the first portion of the first dielectric layer and a first surface of the first portion of the first dielectric layer, the first surface of the first portion being farthest from the first substrate.
    Type: Application
    Filed: December 4, 2017
    Publication date: May 31, 2018
    Inventors: Xi-Zong Chen, Te-Chih Hsiung, Cha-Hsin Chao, Yi-Wei Chiu
  • Publication number: 20180151425
    Abstract: A method includes performing an implantation on a portion of a first layer to form an implanted region, and removing un-implanted portions of the first layer. The implanted region remains after the un-implanted portions of the first layer are removed. An etching is then performed on a second layer underlying the first layer, wherein the implanted region is used as a portion of a first etching mask in the etching. The implanted region is removed. A metal mask is etched using the second layer to form a patterned mask. An inter-layer dielectric is then etched to form a contact opening, wherein the patterned mask is used as a second etching mask.
    Type: Application
    Filed: January 12, 2018
    Publication date: May 31, 2018
    Inventors: Chih-Hung Sun, Han-Ti Hsiaw, Yi-Wei Chiu, Kuan-Cheng Wang, Shin-Yeu Tsai, Jr-Yu Chen, Wen-Cheng Wu
  • Publication number: 20180151385
    Abstract: A chamber door, such as an etch chamber door may be heated during etch processing to, e.g., prevent etching by-products from adhering to the etch chamber door. Such heating of the etch chamber door, however, can impact the processing parameters and result in non-uniform processing, such as non-uniform etching characteristics across a semiconductor wafer, for instance. An insulator, such as an insulating film covering surfaces of the heated door, can reduce or eliminate transmission of heat from the door to a work piece such as a semiconductor wafer and this reduce or eliminate the non-uniformity of the process results.
    Type: Application
    Filed: January 13, 2017
    Publication date: May 31, 2018
    Inventors: Meng-Je Chuang, Wan-Chun Kuan, Yi-Wei Chiu, Tzu-Chan Weng
  • Publication number: 20180151560
    Abstract: A method includes forming a first transistor and a second transistor over a substrate, wherein the first transistor and the second transistor share a drain/source region formed between a first gate of the first transistor and a second gate of the second transistor, forming a first opening in an interlayer dielectric layer and between the first gate and the second gate, depositing an etch stop layer in the first opening and on a top surface of the interlayer dielectric layer, depositing a dielectric layer over the etch stop layer, applying a first etching process to the dielectric layer until the etch stop layer is exposed, performing a second etching process on the etch stop layer until an exposed portion of the etch stop layer and portions of the dielectric layer have been removed.
    Type: Application
    Filed: November 29, 2016
    Publication date: May 31, 2018
    Inventors: Wan Hsuan Hsu, I-Hsiu Wang, Yean-Zhaw Chen, Cheng-Wei Chang, Yu Shih Wang, Hsin-Yan Lu, Yi-Wei Chiu
  • Publication number: 20180151442
    Abstract: A semiconductor device and method of manufacture are provided in which an the physical characteristics of a dielectric material are modified in order to provide additional benefits to surrounding structures during further processing. The modification may be performed by implanting ions into the dielectric material to form a modified region. Once the ions have been implanted, further processing relies upon the modified structure of the modified region instead of the original structure.
    Type: Application
    Filed: October 13, 2017
    Publication date: May 31, 2018
    Inventors: Chia-Ching Tsai, Yi-Wei Chiu, Li-Te Hsu
  • Publication number: 20180151440
    Abstract: A FinFET device and a method of forming the same are provided. A method includes forming a fin over a substrate. An isolation region is formed adjacent the fin. A dummy gate structure is formed over the fin. The fin adjacent the dummy gate structure is recessed to form a first recess. The first recess has a U-shaped bottom surface. The U-shaped bottom surface is below a top surface of the isolation region. The first recess is reshaped to form a reshaped first recess. The reshaped first recess has a V-shaped bottom surface. At least a portion of the V-shaped bottom surface comprises one or more steps. A source/drain region is epitaxially grown in the reshaped first recess.
    Type: Application
    Filed: October 20, 2017
    Publication date: May 31, 2018
    Inventors: Chih-Teng Liao, Chih-Shan Chen, Yi-Wei Chiu, Ying Ting Hsia, Tzu-Chan Weng
  • Publication number: 20180151334
    Abstract: A semiconductor manufacturing method and semiconductor manufacturing tool for performing the same are disclosed. The semiconductor manufacturing tool includes a plasma chamber, a mounting platform disposed within the plasma chamber, a focus ring disposed within the plasma chamber, and at least one actuator mechanically coupled to the focus ring and configured to move the focus ring vertically. The actuator is configured to move the focus ring vertically when a plasma is present in the plasma chamber.
    Type: Application
    Filed: November 29, 2016
    Publication date: May 31, 2018
    Inventors: Yu-Chi Lin, Yi-Wei Chiu, Hung Jui Chang, Chin-Hsing Lin