Patents by Inventor Yi-Wei Chiu

Yi-Wei Chiu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190131176
    Abstract: A FinFET device and a method of forming the same are provided. A method includes forming a fin over a substrate. An isolation region is formed adjacent the fin. A dummy gate structure is formed over the fin. The fin adjacent the dummy gate structure is recessed to form a first recess. The first recess has a U-shaped bottom surface. The U-shaped bottom surface is below a top surface of the isolation region. The first recess is reshaped to form a reshaped first recess. The reshaped first recess has a V-shaped bottom surface. At least a portion of the V-shaped bottom surface comprises one or more steps. A source/drain region is epitaxially grown in the reshaped first recess.
    Type: Application
    Filed: December 21, 2018
    Publication date: May 2, 2019
    Inventors: Chih-Teng Liao, Chih-Shan Chen, Yi-Wei Chiu, Ying Ting Hsia, Tzu-Chan Weng
  • Patent number: 10269917
    Abstract: A method of forming a gate structure includes forming an opening through an insulating layer and forming a first work function metal layer in the opening. The method also includes recessing the first work function metal layer into the opening to form a recessed first work function metal layer, and forming a second work function metal layer in the opening and over the first work function metal layer. The second work function metal layer lines and overhangs the recessed first work function metal layer.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Chun Chen, Tsung Fan Yin, Li-Te Hsu, Ying Ting Hsia, Yi-Wei Chiu
  • Patent number: 10269624
    Abstract: An embodiment method includes patterning an opening through a dielectric layer, depositing an adhesion layer along sidewalls and a bottom surface of the opening, depositing a first mask layer in the opening over the adhesion layer, etching back the first mask layer below a top surface of the dielectric layer, and widening an upper portion of the opening after etching back the first mask layer. The first mask layer masks a bottom portion of the opening while widening the upper portion of the opening. The method further includes removing the first mask layer after widening the upper portion of the opening and after removing the first mask layer, forming a contact in the opening by depositing a conductive material in the opening over the adhesion layer.
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Xi-Zong Chen, Y. H. Kuo, Cha-Hsin Chao, Yi-Wei Chiu, Li-Te Hsu
  • Patent number: 10269938
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a substrate having a base and a fin structure over the base. The fin structure has sidewalls. The semiconductor device structure includes a passivation layer over the sidewalls. The passivation layer includes dopants. The dopants include at least one element selected from group 4A elements, and the dopants and the substrate are made of different materials. The semiconductor device structure includes an isolation layer over the base and surrounding the fin structure and the passivation layer. A first upper portion of the fin structure and a second upper portion of the passivation layer protrude from the isolation layer. The semiconductor device structure includes a gate electrode over the first upper portion of the fin structure and the second upper portion of the passivation layer.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: April 23, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chi-Chin Hsu, Yi-Wei Chiu, Wen-Zhong Ho, Tzu-Chan Weng
  • Publication number: 20190115256
    Abstract: A method includes forming an ILD to cover a gate stack of a transistor. The ILD and the gate stack are parts of a wafer. The ILD is etched to form a contact opening, and a source/drain region of the transistor or a gate electrode in the gate stack is exposed through the contact opening. A conductive capping layer is formed to extend into the contact opening. A metal-containing material is plated on the conductive capping layer in a plating solution using electrochemical plating. The metal-containing material has a portion filling the contact opening. The plating solution has a sulfur content lower than about 100 ppm. A planarization is performed on the wafer to remove excess portions of the metal-containing material. A remaining portion of the metal-containing material and a remaining portion of the conductive capping layer in combination form a contact plug.
    Type: Application
    Filed: December 7, 2018
    Publication date: April 18, 2019
    Inventors: Yu-Sheng Wang, Chi-Cheng Hung, Chen-Yuan Kao, Yi-Wei Chiu, Liang-Yueh Ou Yang, Yueh-Ching Pai
  • Publication number: 20190103311
    Abstract: A method includes forming a transistor, which includes forming a gate dielectric on a semiconductor region, forming a gate electrode over the gate dielectric, and forming a source/drain region extending into the semiconductor region. The method further includes forming a source/drain contact plug over and electrically coupling to the source/drain region, and forming a gate contact plug over and in contact with the gate electrode. At least one of the forming the gate electrode, the forming the source/drain contact plug, and the forming the gate contact plug includes forming a metal nitride barrier layer, and depositing a metal-containing layer over and in contact with the metal nitride barrier layer. The metal-containing layer includes at least one of a cobalt layer and a metal silicide layer.
    Type: Application
    Filed: November 15, 2018
    Publication date: April 4, 2019
    Inventors: Chia-Ching Tsai, Yi-Wei Chiu, Li-Te Hsu
  • Publication number: 20190096691
    Abstract: A chamber door, such as an etch chamber door may be heated during etch processing to, e.g., prevent etching by-products from adhering to the etch chamber door. Such heating of the etch chamber door, however, can impact the processing parameters and result in non-uniform processing, such as non-uniform etching characteristics across a semiconductor wafer, for instance. An insulator, such as an insulating film covering surfaces of the heated door, can reduce or eliminate transmission of heat from the door to a work piece such as a semiconductor wafer and this reduce or eliminate the non-uniformity of the process results.
    Type: Application
    Filed: November 30, 2018
    Publication date: March 28, 2019
    Inventors: Meng-Je Chuang, Wan-Chun Kuan, Yi-Wei Chiu, Tzu-Chan Weng
  • Publication number: 20190096674
    Abstract: A method includes etching a semiconductor substrate to form a first trench and a second trench. A remaining portion of the semiconductor substrate is left between the first trench and the second trench as a semiconductor region. A doped dielectric layer is formed on sidewalls of the semiconductor region and over a top surface of the semiconductor region. The doped dielectric layer includes a dopant. The first trench and the second trench are filled with a dielectric material. An anneal is then performed, and a p-type dopant or an n-type dopant in the doped dielectric layer is diffused into the semiconductor region to form a diffused semiconductor region.
    Type: Application
    Filed: November 29, 2018
    Publication date: March 28, 2019
    Inventors: Chih-Teng Liao, Yi-Wei Chiu, Chih Hsuan Cheng, Li-Te Hsu
  • Publication number: 20190097038
    Abstract: A finFET device and a method of forming are provided. The device includes a transistor comprising a gate electrode and a first source/drain region next to the gate electrode, the gate electrode being disposed over a first substrate. The device also includes a first dielectric layer extending along the first source/drain region, and a second dielectric layer overlying the first dielectric layer. The device also includes a contact disposed in the first dielectric layer and in the second dielectric layer, the contact contacting the gate electrode and the first source/drain region. A first portion of the first dielectric layer extends between the contact and the gate electrode. The contact extends along a sidewall of the first portion of the first dielectric layer and a first surface of the first portion of the first dielectric layer, the first surface of the first portion being farthest from the first substrate.
    Type: Application
    Filed: November 27, 2018
    Publication date: March 28, 2019
    Inventors: Xi-Zong Chen, Te-Chih Hsiung, Cha-Hsin Chao, Yi-Wei Chiu
  • Publication number: 20190096754
    Abstract: A method of forming a semiconductor structure includes forming an etch stop layer on a substrate, forming a metal oxide layer over the etch stop layer, and forming an interlayer dielectric (ILD) layer on the metal oxide layer. The method further includes forming a trench etch opening over the ILD layer, forming a capping layer over the trench etch opening, and forming a via etch opening over the capping layer.
    Type: Application
    Filed: November 28, 2018
    Publication date: March 28, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Allen KE, Yi-Wei CHIU, Hung Jui CHANG, Yu-Wei KUO
  • Publication number: 20190088542
    Abstract: A method of forming a semiconductor device includes forming a source/drain region on a substrate and forming a first interlayer dielectric (ILD) layer over the source/drain region. The method further includes forming a first conductive region within the first ILD layer, selectively removing a portion of the first conductive region to form a concave top surface of the first conductive region. The method also includes forming a second ILD layer over the first ILD layer and forming a second conductive region within the second ILD layer and on the concave top surface. The concave top surface provides a large contact area, and hence reduced contact resistance between the first and second conductive regions.
    Type: Application
    Filed: September 24, 2018
    Publication date: March 21, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yun-Yu Hsieh, Jeng Chang Her, Cha-Hsin Chao, Yi-Wei Chiu, Li-Te Hsu, Ying Ting Hsia
  • Publication number: 20190067179
    Abstract: A dielectric layer is formed over a substrate, an anti-reflective layer is formed over the porous dielectric layer, and a first hardmask is formed over the anti-reflective layer. A via opening and a trench opening are formed within the porous dielectric layer using the anti-reflective layer and the first hardmask as masking materials. After the formation of the trench opening and the via opening, the first hardmask is removed. An interconnect is formed within the openings, and the interconnect has a via with a profile angle of between about 70° and about 80° and a depth ratio of between about 65% and about 70%.
    Type: Application
    Filed: August 22, 2018
    Publication date: February 28, 2019
    Applicants: Taiwan Semiconductor Manufacturing Company, Ltd., Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Ching Tsai, Yi-Wei Chiu, Hung Jui Chang, Li-Te Hsu
  • Patent number: 10199252
    Abstract: Etch uniformity is improved by providing a thermal pad between an insert ring and electrostatic chuck in an etching chamber. The thermal pad provides a continuous passive heat path to dissipate heat from the insert ring and wafer edge to the electrostatic chuck. The thermal pad helps to keep the temperature of the various components in contact with or near the wafer at a more consistent temperature. Because temperature may affect etch rate, such as with etching hard masks over dummy gate formations, a more consistent etch rate is attained. The thermal pad also provides for etch rate uniformity across the whole wafer and not just at the edge. The thermal pad may be used in an etch process to perform gate replacement by removing hard mask layer(s) over a dummy gate electrode.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: February 5, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chin-Huei Chiu, Tsung Fan Yin, Chen-Yi Liu, Hua-Li Hung, Xi-Zong Chen, Yi-Wei Chiu
  • Publication number: 20190035679
    Abstract: An embodiment method includes patterning an opening through a dielectric layer, depositing an adhesion layer along sidewalls and a bottom surface of the opening, depositing a first mask layer in the opening over the adhesion layer, etching back the first mask layer below a top surface of the dielectric layer, and widening an upper portion of the opening after etching back the first mask layer. The first mask layer masks a bottom portion of the opening while widening the upper portion of the opening. The method further includes removing the first mask layer after widening the upper portion of the opening and after removing the first mask layer, forming a contact in the opening by depositing a conductive material in the opening over the adhesion layer.
    Type: Application
    Filed: November 1, 2017
    Publication date: January 31, 2019
    Inventors: Xi-Zong Chen, Y.H. Kuo, Cha-Hsin Chao, Yi-Wei Chiu, Li-Te Hsu
  • Publication number: 20190035908
    Abstract: A method includes forming a fin structure on the substrate, wherein the fin structure includes a first fin active region; a second fin active region; and an isolation feature separating the first and second fin active regions; forming a first gate stack on the first fin active region and a second gate stack on the second fin active region; performing a first recessing process to a first source/drain region of the first fin active region by a first dry etch; performing a first epitaxial growth to form a first source/drain feature on the first source/drain region; performing a fin sidewall pull back (FSWPB) process to remove a dielectric layer on the second fin active region; and performing a second epitaxial growth to form a second source/drain feature on a second source/drain region of the second fin active region.
    Type: Application
    Filed: June 5, 2018
    Publication date: January 31, 2019
    Inventors: Chih-Teng Liao, Chih-Shan Chen, Yi-Wei Chiu, Chih Hsuan Cheng, Tzu-Chan Weng
  • Patent number: 10186456
    Abstract: A method includes forming an ILD to cover a gate stack of a transistor. The ILD and the gate stack are parts of a wafer. The ILD is etched to form a contact opening, and a source/drain region of the transistor or a gate electrode in the gate stack is exposed through the contact opening. A conductive capping layer is formed to extend into the contact opening. A metal-containing material is plated on the conductive capping layer in a plating solution using electrochemical plating. The metal-containing material has a portion filling the contact opening. The plating solution has a sulfur content lower than about 100 ppm. A planarization is performed on the wafer to remove excess portions of the metal-containing material. A remaining portion of the metal-containing material and a remaining portion of the conductive capping layer in combination form a contact plug.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: January 22, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Sheng Wang, Chi-Cheng Hung, Chen-Yuan Kao, Yi-Wei Chiu, Liang-Yueh Ou Yang, Yueh-Ching Pai
  • Publication number: 20190019727
    Abstract: A semiconductor device is provided. The semiconductor device includes a gate stack over a semiconductor substrate and a spacer element over a sidewall of the gate stack. The spacer element has a lower portion and an upper portion, the lower portion has a substantially uniform width. The upper portion becomes wider along a direction from a top of the spacer element towards the lower portion, and a bottom of the upper portion is higher than a top of the gate stack. The semiconductor device also includes a dielectric layer surrounding the gate stack and the spacer element. The semiconductor device further includes a conductive contact penetrating through the dielectric layer and electrically connected to a conductive feature over the semiconductor substrate.
    Type: Application
    Filed: September 10, 2018
    Publication date: January 17, 2019
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hua-Li HUNG, Chih-Lun LU, Hsu-Yu HUANG, Tsung-Fan YIN, Ying-Ting HSIA, Yi-Wei CHIU, Li-Te HSU
  • Publication number: 20190006220
    Abstract: Etch uniformity is improved by providing a thermal pad between an insert ring and electrostatic chuck in an etching chamber. The thermal pad provides a continuous passive heat path to dissipate heat from the insert ring and wafer edge to the electrostatic chuck. The thermal pad helps to keep the temperature of the various components in contact with or near the wafer at a more consistent temperature. Because temperature may affect etch rate, such as with etching hard masks over dummy gate formations, a more consistent etch rate is attained. The thermal pad also provides for etch rate uniformity across the whole wafer and not just at the edge. The thermal pad may be used in an etch process to perform gate replacement by removing hard mask layer(s) over a dummy gate electrode.
    Type: Application
    Filed: October 5, 2017
    Publication date: January 3, 2019
    Inventors: Chin-Huei Chiu, Tsung Fan Yin, Chen-Yi Liu, Hua-Li Hung, Xi-Zong Chen, Yi-Wei Chiu
  • Publication number: 20190006236
    Abstract: A method includes forming a bottom source/drain contact plug in a bottom inter-layer dielectric. The bottom source/drain contact plug is electrically coupled to a source/drain region of a transistor. The method further includes forming an inter-layer dielectric overlying the bottom source/drain contact plug. A source/drain contact opening is formed in the inter-layer dielectric, with the bottom source/drain contact plug exposed through the source/drain contact opening. A dielectric spacer layer is formed to have a first portion extending into the source/drain contact opening and a second portion over the inter-layer dielectric. An anisotropic etching is performed on the dielectric spacer layer, and a remaining vertical portion of the dielectric spacer layer forms a source/drain contact spacer. The remaining portion of the source/drain contact opening is filled to form an upper source/drain contact plug.
    Type: Application
    Filed: July 25, 2018
    Publication date: January 3, 2019
    Inventors: Yi-Tsang Hsieh, Cha-Hsin Chao, Yi-Wei Chiu, Li-Te Hsu, Ying Ting Hsia
  • Publication number: 20190006465
    Abstract: A method includes etching a substrate to form a first semiconductor strip. A first dummy gate structure is formed over a first channel region of the first semiconductor strip. First and second recesses are etched in the first semiconductor strip on either side of a first dummy gate. An intermetallic doping film is formed in the first recess and the second recess. A dopant of the intermetallic doping film is diffused into the first semiconductor strip proximate the recesses. Source/drain regions are epitaxially grown in the recesses. A device includes semiconductor strips and a plurality of gate stacks. A first epitaxial source/drain region is interposed between a first two of the plurality of gate stacks. A first dopant diffusion area surrounds the first epitaxial source/drain region and has a first concentration of a first dopant greater than a second concentration of the first dopant outside the first dopant diffusion area.
    Type: Application
    Filed: August 1, 2017
    Publication date: January 3, 2019
    Inventors: Chih-Teng Liao, Yi-Wei Chiu, Tzu-Chan Weng, Chih Hsuan Cheng