Patents by Inventor Yifei Mo

Yifei Mo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11152640
    Abstract: Solid-state lithium ion electrolytes of lithium potassium bismuth oxide based compounds are provided which contain an anionic framework capable of conducting lithium ions. Materials of specific formulae are provided and methods to alter the materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are provided. Electrodes containing the lithium borate based materials coated on the active material and batteries containing the electrodes are also provided.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: October 19, 2021
    Assignees: UNIVERSITY OF MARYLAND, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Yifei Mo, Xingfeng He, Qiang Bai, Chen Ling, Ying Zhang
  • Patent number: 11145896
    Abstract: Solid-state lithium ion electrolytes of lithium potassium tantalate based compounds are provided which contain an anionic framework capable of conducting lithium ions. An activation energy of the lithium metal silicate composites is from 0.12 to 0.45 eV and conductivities are from 10?3 to 40 mS/cm at 300K. Compounds of specific formulae are provided and methods to alter the materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are also provided. Electrodes containing the lithium potassium tantalate based materials and batteries with such electrodes are also provided.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: October 12, 2021
    Assignees: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Yifei Mo, Qiang Bai, Xingfeng He, Chen Ling
  • Publication number: 20210296698
    Abstract: Solid-state lithium ion electrolytes of lithium phosphate derivative compounds are provided which contain an anionic framework capable of conducting lithium ions. The activation energy of the lithium phosphate deravitive compounds is from 0.18 to 0.34 eV and conductivities are from 10?3 to 12 mS/cm at 300K. Materials of specific formulae are provided and methods to alter the composite materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are also provided. Electrodes containing the lithium phosphate derivative materials and batteries with such electrodes are also provided.
    Type: Application
    Filed: June 9, 2021
    Publication date: September 23, 2021
    Applicants: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Yifei MO, Qiang BAI, Xingfeng HE, Chen LING
  • Publication number: 20210296697
    Abstract: Electrodes containing lithium phosphate derivative materials and batteries with such electrodes are provided. The lithium phosphate derivative compounds contain an anionic framework capable of conducting lithium ions and have an activation energy from 0.2 to 0.45 eV and conductivities from 0.01 to 10 mS/cm at 300K. Materials of specific formulae are provided and methods to alter the composite materials with inclusion of aliovalent ions shown.
    Type: Application
    Filed: June 9, 2021
    Publication date: September 23, 2021
    Applicants: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Yifei MO, Qiang BAI, Xingfeng HE, Chen LING
  • Patent number: 11056717
    Abstract: Solid-state lithium ion electrolytes of lithium phosphate derivative compounds are provided which contain an anionic framework capable of conducting lithium ions. The activation energy of the lithium phosphate derivative compounds is from 0.2 to 0.45 eV and conductivities are from 0.01 to 10 mS/cm at 300K. Materials of specific formulae are provided and methods to alter the composite materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are also provided. Electrodes containing the lithium phosphate derivative materials and batteries with such electrodes are also provided.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: July 6, 2021
    Assignees: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Yifei Mo, Qiang Bai, Xingfeng He, Chen Ling
  • Patent number: 11018375
    Abstract: Solid-state lithium ion electrolytes of lithium potassium element oxide based compounds are provided which contain an anionic framework capable of conducting lithium ions. The element atoms are Ir, Sb, I Nb and W. An activation energy of the lithium potassium element oxide compounds is from 0.15 to 0.50 eV and conductivities are from 10?3 to 22 mS/cm at 300K. Compounds of specific formulae are provided and methods to alter the materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are also provided. Electrodes containing the lithium potassium element oxide based materials and batteries with such electrodes are also provided.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: May 25, 2021
    Assignees: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Yifei Mo, Qiang Bai, Xingfeng He, Chen Ling
  • Patent number: 10971761
    Abstract: One or more interfacial layers in contact with a solid-state electrolyte and hybrid electrolyte materials. Interfacial layers comprise inorganic (e.g., metal oxides and soft inorganic materials) or organic materials (e.g., polymer materials, gel materials and ion-conducting liquids). The interfacial layers can improve the electrical properties (e.g., reduce the impedance) of an interface between an a cathode and/or anode and a solid-state electrolyte. The interfacial layers can be used in, for example, solid-state batteries (e.g., solid-state, ion-conducting batteries).
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: April 6, 2021
    Assignee: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Liangbing Hu, Xiaogang Han, Eric D. Wachsman, Yifei Mo
  • Publication number: 20210083319
    Abstract: Solid-state lithium ion electrolytes of lithium potassium element oxide based compounds are provided which contain an anionic framework capable of conducting lithium ions. The element atoms are Ir, Sb, I Nb and W. An activation energy of the lithium potassium element oxide compounds is from 0.15 to 0.50 eV and conductivities are from 10?3 to 22 mS/cm at 300K. Compounds of specific formulae are provided and methods to alter the materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are also provided. Electrodes containing the lithium potassium element oxide based materials and batteries with such electrodes are also provided.
    Type: Application
    Filed: September 13, 2019
    Publication date: March 18, 2021
    Applicants: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Yifei MO, Qiang BAI, Xingfeng HE, Chen LING
  • Publication number: 20210083318
    Abstract: Solid-state lithium ion electrolytes of lithium potassium tantalate based compounds are provided which contain an anionic framework capable of conducting lithium ions. An activation energy of the lithium metal silicate composites is from 0.12 to 0.45 eV and conductivities are from 10?3 to 40 mS/cm at 300K. Compounds of specific formulae are provided and methods to alter the materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are also provided. Electrodes containing the lithium potassium tantalate based materials and batteries with such electrodes are also provided.
    Type: Application
    Filed: September 13, 2019
    Publication date: March 18, 2021
    Applicants: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Yifei MO, Qiang BAI, Xingfeng HE, Chen LING
  • Patent number: 10938063
    Abstract: Solid-state lithium ion electrolytes of lithium silicate based composites are provided which contain an anionic framework capable of conducting lithium ions. Composites of specific formulae are provided and methods to alter the composite materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are also provided. Electrodes containing the lithium metal sulfide based materials and batteries with such electrodes are also provided.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: March 2, 2021
    Assignees: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Yifei Mo, Qiang Bai, Xingfeng He, Chen Ling
  • Patent number: 10923763
    Abstract: Solid-state lithium ion electrolytes of lithium metal sulfide based composites are provided which contain an anionic framework capable of conducting lithium ions. Composites of specific formulae are provided and methods to alter the composite materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are also provided. Electrodes containing the lithium metal sulfide based materials and batteries with such electrodes are also provided.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: February 16, 2021
    Assignees: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Yifei Mo, Qiang Bai, Xingfeng He, Chen Ling
  • Publication number: 20210028487
    Abstract: Solid-state lithium ion electrolytes of lithium fluoride based composites are provided which contain an anionic framework capable of conducting lithium ions. Composites of specific formulae are provided and methods to alter the composite materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are provided. Electrodes containing the lithium fluoride based composites are also provided.
    Type: Application
    Filed: October 1, 2020
    Publication date: January 28, 2021
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., University Of Maryland, College Park
    Inventors: Chen LING, Ying Zhang, Yifei Mo, Qiang Bai
  • Patent number: 10854916
    Abstract: Solid-state lithium ion electrolytes of lithium metal sulfide based composites are provided which contain an anionic framework capable of conducting lithium ions. An activation energy of the lithium metal sulfide composites is from 0.2 to 0.45 eV and conductivities are from 10?4 to 3.0 mS/cm at 300K. Composites of specific formulae are provided and methods to alter the composite materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are also provided. Electrodes containing the lithium metal sulfide based composites and batteries with such electrodes are also provided.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: December 1, 2020
    Assignees: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Yifei Mo, Xingfeng He, Chen Ling, Ying Zhang
  • Patent number: 10854915
    Abstract: Solid-state lithium ion electrolytes of lithium fluoride based composites are provided which contain an anionic framework capable of conducting lithium ions. Composites of specific formulae are provided and methods to alter the composite materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are provided. Electrodes containing the lithium fluoride based composites are also provided.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: December 1, 2020
    Assignees: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC., UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Chen Ling, Ying Zhang, Yifei Mo, Qiang Bai
  • Patent number: 10818969
    Abstract: Solid-state lithium ion electrolytes of lithium borate based composites are provided which contain an anionic framework capable of conducting lithium ions. Materials of specific formulae are provided and methods to alter the materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are provided. Electrodes containing the lithium borate based materials and batteries containing the electrodes are also provided.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: October 27, 2020
    Assignees: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA INC.
    Inventors: Yifei Mo, Xingfeng He, Chen Ling, Ying Zhang
  • Publication number: 20200251770
    Abstract: Solid-state lithium ion electrolytes of lithium silicate based composites are provided which contain an anionic framework capable of conducting lithium ions. Composites of specific formulae are provided and methods to alter the composite materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are also provided. Electrodes containing the lithium metal sulfide based materials and batteries with such electrodes are also provided.
    Type: Application
    Filed: January 31, 2019
    Publication date: August 6, 2020
    Applicants: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Yifei MO, Qiang Bai, Xingfeng He, Chen Ling
  • Publication number: 20200251772
    Abstract: Solid-state lithium ion electrolytes of lithium metal sulfide based composites are provided which contain an anionic framework capable of conducting lithium ions. Composites of specific formulae are provided and methods to alter the composite materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are also provided. Electrodes containing the lithium metal sulfide based materials and batteries with such electrodes are also provided.
    Type: Application
    Filed: January 31, 2019
    Publication date: August 6, 2020
    Applicants: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Yifei MO, Qiang BAI, Xingfeng HE, Chen LING
  • Publication number: 20200251771
    Abstract: Solid-state lithium ion electrolytes of lithium phosphate derivative compounds are provided which contain an anionic framework capable of conducting lithium ions. The activation energy of the lithium phosphate derivative compounds is from 0.2 to 0.45 eV and conductivities are from 0.01 to 10 mS/cm at 300K. Materials of specific formulae are provided and methods to alter the composite materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are also provided. Electrodes containing the lithium phosphate derivative materials and batteries with such electrodes are also provided.
    Type: Application
    Filed: January 31, 2019
    Publication date: August 6, 2020
    Applicants: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Yifei MO, Qiang BAI, Xingfeng HE, Chen LING
  • Patent number: 10714788
    Abstract: Solid-state lithium ion electrolytes of lithium silicate based composites are provided which contain an anionic framework capable of conducting lithium ions. An activation energy for lithium ion migration in the solid state lithium ion electrolytes is 0.5 eV or less and room temperature conductivities are greater than 10?5 S/cm. Composites of specific formulae are provided and methods to alter the composite materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are also provided.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: July 14, 2020
    Assignees: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Yifei Mo, Xingfeng He, Chen Ling, Ying Zhang
  • Publication number: 20200161700
    Abstract: Solid-state lithium ion electrolytes of lithium silicate based composites are provided which contain an anionic framework capable of conducting lithium ions. An activation energy for lithium ion migration in the solid state lithium ion electrolytes is 0.5 eV or less and room temperature conductivities are greater than 100.5 S/cm. Composites of specific formulae are provided and methods to alter the composite materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are also provided.
    Type: Application
    Filed: January 28, 2020
    Publication date: May 21, 2020
    Applicants: UNIVERSITY OF MARYLAND, COLLEGE PARK, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Yifei MO, Xingfeng HE, Chen LING, Ying ZHANG