Patents by Inventor Yifei Mo

Yifei Mo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9966629
    Abstract: A sodium-conductive solid-state electrolyte material includes a compound of the composition Na10MP2S12, wherein M is selected from Ge, Si, and Sn. The material may have a conductivity of at least 1.0×10?5 S/cm at a temperature of about 300K and may have a tetragonal microstructure, e.g., a skewed P1 crystallographic structure. Also provided are an electrochemical cell that includes the sodium-conductive solid-state electrolyte material and a method for producing the sodium-conductive solid electrolyte material via controlled thermal processing parameters.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: May 8, 2018
    Assignees: SAMSUNG ELECTRONICS CO., LTD., MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: William D. Richards, Shyue Ping Ong, Yifei Mo, Gerbrand Ceder, Lincoln Miara, Tomoyuki Tsujimura, Yan Wang, Young-Gyoon Ryu, Naoki Suzuki, Ichiro Uechi
  • Patent number: 9904772
    Abstract: Non-normal statistics applied to diffusivity calculations accelerate screening of ionic conductors for electrochemical devices such as electric storage batteries, fuel cells, and sensors. Displacements of atomic species within a crystalline structure for a candidate ionic conductor material are analyzed using a Skellam distribution optionally combined with Gaussian noise to calculate values for the standard deviation, upper error bound, and lower error bound for predicted values of diffusivity (D). When the predicted values of D have sufficient statistical precision, the diffusivity calculation is terminated and the calculated diffusivity is compared to a threshold value of diffusivity. When the threshold has been exceeded, the candidate ionic conductor may be listed as a preferred good conductor. When the calculated diffusivity fails to exceed the threshold, the material may be listed as a poor conductor and may be eliminated from further consideration.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: February 27, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Lincoln J Miara, William Richards, Shyue Ping Ong, Yifei Mo, Gerbrand Ceder
  • Publication number: 20170338522
    Abstract: One or more interfacial layers in contact with a solid-state electrolyte and hybrid electrolyte materials. Interfacial layers comprise inorganic (e.g., metal oxides and soft inorganic materials) or organic materials (e.g., polymer materials, gel materials and ion-conducting liquids). The interfacial layers can improve the electrical properties (e.g., reduce the impedance) of an interface between an a cathode and/or anode and a solid-state electrolyte. The interfacial layers can be used in, for example, solid-state batteries (e.g., solid-state, ion-conducting batteries).
    Type: Application
    Filed: October 28, 2015
    Publication date: November 23, 2017
    Inventors: Liangbing HU, Xiaogang HAN, Eric D. WACHSMAN, Yifei MO
  • Publication number: 20160226095
    Abstract: A sodium-conductive solid-state electrolyte material includes a compound of the composition Na10MP2S12, wherein M is selected from Ge, Si, and Sn. The material may have a conductivity of at least 1.0×10?5 S/cm at a temperature of about 300K and may have a tetragonal microstructure, e.g., a skewed P1 crystallographic structure. Also provided are an electrochemical cell that includes the sodium-conductive solid-state electrolyte material and a method for producing the sodium-conductive solid electrolyte material via controlled thermal processing parameters.
    Type: Application
    Filed: April 28, 2015
    Publication date: August 4, 2016
    Inventors: William D. Richards, Shyue Ping Ong, Yifei Mo, Gerbrand Ceder, Lincoln Miara, Tomoyuki Tsujimura, Yan Wang, Young-Gyoon Ryu, Naoki Suzuki, Ichiro Uechi
  • Publication number: 20150204809
    Abstract: Non-normal statistics applied to diffusivity calculations accelerate screening of ionic conductors for electrochemical devices such as electric storage batteries, fuel cells, and sensors. Displacements of atomic species within a crystalline structure for a candidate ionic conductor material are analyzed using a Skellam distribution optionally combined with Gaussian noise to calculate values for the standard deviation, upper error bound, and lower error bound for predicted values of diffusivity (D). When the predicted values of D have sufficient statistical precision, the diffusivity calculation is terminated and the calculated diffusivity is compared to a threshold value of diffusivity. When the threshold has been exceeded, the candidate ionic conductor may be listed as a preferred good conductor. When the calculated diffusivity fails to exceed the threshold, the material may be listed as a poor conductor and may be eliminated from further consideration.
    Type: Application
    Filed: November 7, 2014
    Publication date: July 23, 2015
    Inventors: Lincoln J. Miara, William Richards, Shyue Ping Ong, Yifei Mo, Gerbrand Ceder