Patents by Inventor Ying-Chih Wang

Ying-Chih Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170122904
    Abstract: Embodiments of fluid distribution manifolds, cartridges, and microfluidic systems are described herein. Fluid distribution manifolds may include an insert member and a manifold base and may define a substantially closed channel within the manifold when the insert member is press-fit into the base. Cartridges described herein may allow for simultaneous electrical and fluidic interconnection with an electrical multiplex board and may be held in place using magnetic attraction.
    Type: Application
    Filed: January 16, 2017
    Publication date: May 4, 2017
    Inventors: Ronald F. Renzi, Gregory J. Sommer, Anup K. Singh, Anson V. Hatch, Mark R. Claudnic, Ying-Chih Wang, James L. Van De Vreugde
  • Patent number: 9579649
    Abstract: Embodiments of fluid distribution manifolds, cartridges, and microfluidic systems are described herein. Fluid distribution manifolds may include an insert member and a manifold base and may define a substantially closed channel within the manifold when the insert member is press-fit into the base. Cartridges described herein may allow for simultaneous electrical and fluidic interconnection with an electrical multiplex board and may be held in place using magnetic attraction.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: February 28, 2017
    Assignee: Sandia Corporation
    Inventors: Ronald F. Renzi, Gregory J. Sommer, Anup K. Singh, Anson V. Hatch, Mark R. Claudnic, Ying-Chih Wang, James L. Van de Vreugde
  • Patent number: 9409357
    Abstract: Embodiments of the present invention provide devices, systems, and methods for microscale isoelectric fractionation. Analytes in a sample may be isolated according to their isoelectric point within a fractionation microchannel. A microfluidic device according to an embodiment of the invention includes a substrate at least partially defining a fractionation microchannel. The fractionation microchannel has at least one cross-sectional dimension equal to or less than 1 mm. A plurality of membranes of different pHs are disposed in the microchannel. Analytes having an isoelectric point between the pH of the membranes may be collected in a region of the fractionation channel between the first and second membranes through isoelectric fractionation.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: August 9, 2016
    Assignee: Sandia Corporation
    Inventors: Gregory J. Sommer, Anson V. Hatch, Ying-Chih Wang, Anup K. Singh
  • Patent number: 9331379
    Abstract: A mobile device includes a substrate, a ground element, and a radiation branch. The ground element includes a ground branch, wherein an edge of the ground element has a notch extending into the interior of the ground element so as to form a slot region, and the ground branch partially surrounds the slot region. The radiation branch is substantially inside the slot region, and is coupled to the ground branch of the ground element. The ground branch and the radiation branch form an antenna structure.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: May 3, 2016
    Assignee: HTC Corporation
    Inventors: Chien-Pin Chiu, Hsiao-Wei Wu, Tiao-Hsing Tsai, Ying-Chih Wang
  • Patent number: 9201069
    Abstract: Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: December 1, 2015
    Assignee: Sandia Corporation
    Inventors: Anson V. Hatch, Gregory J. Sommer, Anup K. Singh, Ying-Chih Wang, Vinay Abhyankar
  • Publication number: 20150200448
    Abstract: A mobile device includes a ground plane, a grounding branch, a connection element, a first radiation branch, and a second radiation branch. The grounding branch is coupled to the ground plane. A first open slot is formed and substantially surrounded by the grounding branch and the ground plane. The first radiation branch is coupled through the connection element to the grounding branch. A second open slot is formed and is substantially surrounded by the first radiation branch and the grounding branch. The second radiation branch is disposed in the second open slot and is coupled to the grounding branch. A multi-band antenna structure is formed by the grounding branch, the connection element, the first radiation branch, and the second radiation branch.
    Type: Application
    Filed: January 16, 2014
    Publication date: July 16, 2015
    Applicant: HTC Corporation
    Inventors: Tiao-Hsing TSAI, Chien-Pin CHIU, Hsiao-Wei WU, Ying-Chih WANG
  • Patent number: 9005417
    Abstract: Embodiments of the present invention provide devices, systems, and methods for microscale isoelectric fractionation. Analytes in a sample may be isolated according to their isoelectric point within a fractionation microchannel. A microfluidic device according to an embodiment of the invention includes a substrate at least partially defining a fractionation microchannel. The fractionation microchannel has at least one cross-sectional dimension equal to or less than 1 mm. A plurality of membranes of different pHs are disposed in the microchannel. Analytes having an isoelectric point between the pH of the membranes may be collected in a region of the fractionation channel between the first and second membranes through isoelectric fractionation.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: April 14, 2015
    Assignee: Sandia Corporation
    Inventors: Gregory J. Sommer, Anson V. Hatch, Ying-Chih Wang, Anup K. Singh
  • Publication number: 20150038372
    Abstract: Embodiments of the present invention provide methods, microfluidic devices, and systems for the detection of an active target agent in a fluid sample. A substrate molecule is used that contains a sequence which may cleave in the presence of an active target agent. A SNAP25 sequence is described, for example, that may be cleaved in the presence of Botulinum Neurotoxin. The substrate molecule includes a reporter moiety. The substrate molecule is exposed to the sample, and resulting reaction products separated using electrophoretic separation. The elution time of the reporter moiety may be utilized to identify the presence or absence of the active target agent.
    Type: Application
    Filed: September 24, 2014
    Publication date: February 5, 2015
    Inventors: Gregory J. Sommer, Anson V. Hatch, Anup K. Singh, Ying-Chih Wang
  • Patent number: 8871496
    Abstract: Embodiments of the present invention provide methods, microfluidic devices, and systems for the detection of an active target agent in a fluid sample. A substrate molecule is used that contains a sequence which may cleave in the presence of an active target agent. A SNAP25 sequence is described, for example, that may be cleaved in the presence of Botulinum Neurotoxin. The substrate molecule includes a reporter moiety. The substrate molecule is exposed to the sample, and resulting reaction products separated using electrophoretic separation. The elution time of the reporter moiety may be utilized to identify the presence or absence of the active target agent.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: October 28, 2014
    Assignee: Sandia Corporation
    Inventors: Gregory J. Sommer, Anson V. Hatch, Anup K. Singh, Ying-Chih Wang
  • Publication number: 20140178252
    Abstract: Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.
    Type: Application
    Filed: February 25, 2014
    Publication date: June 26, 2014
    Applicant: Sandia Corporation
    Inventors: Anson V. Hatch, Gregory J. Sommer, Anup K. Singh, Ying-Chih Wang, Vinay Abhyankar
  • Patent number: 8754821
    Abstract: A multi-band antenna includes a feed-in section, a loop conductor, a first conductor arm, a second conductor arm, and a third conductor arm. The feed-in section includes a feed-in point for feeding of signals. The loop conductor extends from the feed-in section and has a grounding point disposed adjacent to the feed-in point. The first conductor arm is configured to resonate in a first frequency band and extends from the feed-in section. The second conductor arm is configured to resonate in a second frequency band and extends from the feed-in section. The third conductor arm is configured to resonate in a third frequency band and extends from the feed-in section. At least one of the loop conductor, the first conductor arm, the second conductor arm, and the third conductor arm is bent so as to be disposed in different planes.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: June 17, 2014
    Assignee: Quanta Computer Inc.
    Inventors: Ying-Chih Wang, Ling-Chen Wei, Tsung-Ming Kuo
  • Patent number: 8728290
    Abstract: Disclosed is a novel microfluidic device enabling on-chip implementation of a two-dimensional separation methodology. Previously disclosed microscale immobilized pH gradients (IPG) are combined with perpendicular polyacrylamide gel electrophoresis (PAGE) microchannels to achieve orthogonal separations of biological samples. Device modifications enable inclusion of sodium dodecyl sulfate (SDS) in the second dimension. The device can be fabricated to use either continuous IPG gels, or the microscale isoelectric fractionation membranes we have also previously disclosed, for the first dimension. The invention represents the first all-gel two-dimensional separation microdevice, with significantly higher resolution power over existing devices.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: May 20, 2014
    Assignee: Sandia Corporation
    Inventors: Gregory J. Sommer, Anson V. Hatch, Anup K. Singh, Ying-Chih Wang
  • Patent number: 8723754
    Abstract: A multi-band antenna includes a loop conductor, a first conductor arm, and a second conductor arm. The loop conductor is configured to resonate in a first frequency band and includes a feed-in end for feeding of signals and a main body that extends from the feed-in end, and that has a grounding point disposed adjacent to the feed-in end. The first conductor arm is configured to resonate in a second frequency band and extends from the feed-in end. The second conductor arm is configured to resonate in a third frequency band and extends from the feed-in end. At least one of the loop conductor, the first conductor arm, and the second conductor arm is bent so as to be disposed in different planes.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: May 13, 2014
    Assignee: Quanta Computer Inc.
    Inventors: Ying-Chih Wang, Tsung-Ming Kuo, Ling-Chen Wei
  • Patent number: 8703058
    Abstract: Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.
    Type: Grant
    Filed: September 9, 2009
    Date of Patent: April 22, 2014
    Assignee: Sandia Corporation
    Inventors: Anson V. Hatch, Gregory J. Sommer, Anup K. Singh, Ying-Chih Wang, Vinay V. Abhyankar
  • Publication number: 20140062818
    Abstract: A mobile device includes a ground plane, a grounding branch, and a feeding element. The grounding branch is coupled to the ground plane, wherein a slot is formed between the ground plane and the grounding branch. The feeding element extends across the slot. The feeding element is coupled between the grounding branch and a signal source. An antenna structure is formed by the feeding element and the grounding branch.
    Type: Application
    Filed: August 29, 2012
    Publication date: March 6, 2014
    Applicant: HTC CORPORATION
    Inventors: Tiao-Hsing TSAI, Chien-Pin CHIU, Hsiao-Wei WU, Ying-Chih WANG
  • Publication number: 20130231609
    Abstract: A device for mixing and delivering a mixture of fluids to a target site includes a tube for containing the mixture. A compressible auger for mixing the fluids is movably disposed within the tube, one end of the auger being free at the distal end of the tube. A plunger is also movable within the tube in communication with the other end of the auger. When the plunger is moved axially within the tube the auger also moves axially and the auger is compressed to dispense the fluid. The mixing and delivery device can be used with an apparatus for the arthroscopic delivery of a tissue repair material to a repair site. The apparatus includes a first sheath and a second sheath removably attached to the first sheath for delivering the tissue repair material to the repair site.
    Type: Application
    Filed: October 28, 2012
    Publication date: September 5, 2013
    Applicant: Children's Medical Center Corporation
    Inventors: Alexander H. Slocum, Matthew R. Carvey, Alexey Salamini, Ying-Chih Wang, Martha M. Murray, Daniel G. Walker
  • Publication number: 20130207846
    Abstract: A mobile device includes a substrate, a ground element, and a radiation branch. The ground element includes a ground branch, wherein an edge of the ground element has a notch extending into the interior of the ground element so as to form a slot region, and the ground branch partially surrounds the slot region. The radiation branch is substantially inside the slot region, and is coupled to the ground branch of the ground element. The ground branch and the radiation branch form an antenna structure.
    Type: Application
    Filed: April 9, 2012
    Publication date: August 15, 2013
    Applicant: HTC CORPORATION
    Inventors: Chien-Pin CHIU, Hsiao-Wei WU, Tiao-Hsing TSAI, Ying-Chih WANG
  • Patent number: 8394312
    Abstract: Methods for making a microfluidic device according to embodiments of the present invention include defining˜cavity. Polymer precursor solution is positioned in the cavity, and exposed to light to begin the polymerization process and define a microchannel. In some embodiments, after the polymerization process is partially complete, a solvent rinse is performed, or fresh polymer precursor introduced into the microchannel. This may promote removal of unpolymerized material from the microchannel and enable smaller feature sizes. The polymer precursor solution may contain an iniferter. Polymerized features therefore may be capped with the iniferter, which is photoactive. The iniferter may aid later binding of a polyacrylamide gel to the microchannel surface.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: March 12, 2013
    Assignee: Sandia Corporation
    Inventors: Gregory J. Sommer, Anson V. Hatch, Ying-Chih Wang, Anup K. Singh, Ronald F. Renzi, Mark R. Claudnic
  • Patent number: 8329016
    Abstract: Disclosed is a novel microfluidic device enabling on-chip implementation of a two-dimensional separation methodology. Previously disclosed microscale immobilized pH gradients (IPG) are combined with perpendicular polyacrylamide gel electrophoresis (PAGE) microchannels to achieve orthogonal separations of biological samples. Device modifications enable inclusion of sodium dodecyl sulfate (SDS) in the second dimension. The device can be fabricated to use either continuous IPG gels, or the microscale isoelectric fractionation membranes we have also previously disclosed, for the first dimension. The invention represents the first all-gel two-dimensional separation microdevice, with significantly higher resolution power over existing devices.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: December 11, 2012
    Assignee: Sandia Corporation
    Inventors: Gregory J. Sommer, Anson V. Hatch, Anup K. Singh, Ying-Chih Wang
  • Patent number: 8308681
    Abstract: A device for mixing and delivering a mixture of fluids to a target site includes a tube for containing the mixture. A compressible auger for mixing the fluids is movably disposed within the tube, one end of the auger being free at the distal end of the tube. A plunger is also movable within the tube in communication with the other end of the auger. When the plunger is moved axially within the tube the auger also moves axially and the auger is compressed to dispense the fluid. The mixing and delivery device can be used with an apparatus for the arthroscopic delivery of a tissue repair material to a repair site. The apparatus includes a first sheath and a second sheath removably attached to the first sheath for delivering the tissue repair material to the repair site.
    Type: Grant
    Filed: February 9, 2006
    Date of Patent: November 13, 2012
    Assignee: Children's Medical Center Corporation
    Inventors: Alexander Slocum, Matthew R. Carvey, Alexey Salamini, Daniel G. Walker, Ying-Chih Wang, Martha M. Murray