Patents by Inventor Ying Wei

Ying Wei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150037276
    Abstract: The present invention provides a hydrocolloid composition which, based on 100% by weight of the hydrocolloid composition, comprises: 10-90%) by weight of a polyisobutylene tackifier; 5-55% by weight of a hydrophilic absorbing substance; and 0.1-20% by weight of a functional ingredient. The invention further provides an article containing the hydrocolloid composition.
    Type: Application
    Filed: November 8, 2011
    Publication date: February 5, 2015
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Ting Fan, Ying Wei Xie, Jing Huang, Kai Qiu, Grace Ho, Dong Wu, Jie Hu
  • Publication number: 20150037492
    Abstract: The present invention discloses a method for producing wheat glutamine peptide using wheat gluten powder as raw material, belonging to the fields of food and biotechnology. The method includes the steps of: performing enzymolysis in two steps using Alcalase and papain with the wheat gluten powder as raw material, to obtain the wheat glutamine peptide with components with molecular weight of less than 1000 Da being more than 90%, characteristic glutamine peptide segment glutamine-arginine-glutamine (Gln-Arg-Gln, QRQ) content being more than 2.0% and glutamine content being up to 23.54% by treating the enzymatic hydrolysate by centrifugation, ultrafiltration, concentration, spray drying, etc. The produced glutamine peptide can be used as functional nutrition composition ingredient in the development and production of ordinary foods, health foods and medicines.
    Type: Application
    Filed: October 15, 2014
    Publication date: February 5, 2015
    Inventors: MUYI CAI, RUIZENG GU, JUN LU, FENG LIN, YONG MA, ZHE DONG, XINGCHANG PAN, YONGQING MA, YAGUANG XU, ZHENTAO JIN, LIANG CHEN, WENYING LlU, YING WEI, HAIXIN ZHANG, LU LU, YAN LIU, TAO MA, SIMENG JIANG, KELU CAO, JING WANG
  • Publication number: 20150021069
    Abstract: A method of manufacturing a printed circuit board precursor includes the steps of providing a substrate. Then the surface of the substrate is catalyzed to form a catalytic layer by a catalyst. Subsequently, a conductive layer is formed and attached to the surface of the catalytic layer. Finally, a metal layer is electroplated on the conductive layer. A printed circuit board precursor includes a substrate having a surface. Specifically, the surface is catalytically treated to form a catalytic layer. The precursor also includes a conductive layer which is attached to and covers the catalytic layer and a metal layer which is disposed on the conductive layer.
    Type: Application
    Filed: October 21, 2013
    Publication date: January 22, 2015
    Applicant: ICHIA TECHNOLOGIES,INC.
    Inventors: CHIEN-HWA CHIU, Chih-Min Chao, Peir-Rong Kuo, Chia-Hua Chiang, Chih-Cheng Hsiao, Feng-Ping Kuan, Ying-Wei Lee, Wei-Cheng Lee
  • Publication number: 20150021776
    Abstract: A polysilicon layer including an amorphous polysilicon layer and a crystallized polysilicon layer is provided. The crystallized polysilicon layer is disposed on the amorphous polysilicon layer. Besides, the amorphous polysilicon layer has a first grain size, the crystallized polysilicon layer has a second grain size, and the first grain size is smaller than the second grain size. The amorphous polysilicon layer with a smaller grain size can serve as a base for the following deposition, so that the crystallized polysilicon layer formed thereon has a flatter topography, and thus, the surface roughness is reduced and the Rs uniformity within a wafer is improved.
    Type: Application
    Filed: October 6, 2014
    Publication date: January 22, 2015
    Inventors: Chien-Liang Lin, Yu-Ren Wang, Ying-Wei Yen, Wen-Yi Teng, Chan-Lon Yang
  • Patent number: 8921238
    Abstract: A method for processing a high-k dielectric layer includes the following steps. A semiconductor substrate is provided, and a high-k dielectric layer is formed thereon. The high-k dielectric layer has a crystalline temperature. Subsequently, a first annealing process is performed, and a process temperature of the first annealing process is substantially smaller than the crystalline temperature. A second annealing process is performed, and a process temperature of the second annealing process is substantially larger than the crystalline temperature.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: December 30, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Shao-Wei Wang, Yu-Ren Wang, Chien-Liang Lin, Wen-Yi Teng, Tsuo-Wen Lu, Chih-Chung Chen, Ying-Wei Yen
  • Publication number: 20140370066
    Abstract: The application discloses the formation of antimicrobial glass-ceramic articles having an amorphous phase and a crystalline phase and an antimicrobial agent selected from the group consisting of silver, copper and a mixture of silver and copper. The antimicrobial glass-ceramic can have a Log Reduction of >2.
    Type: Application
    Filed: August 28, 2014
    Publication date: December 18, 2014
    Inventors: George Halsey Beall, Nicholas Francis Borrelli, Robert Michael Morena, Charlene Marie Smith, Ying Wei
  • Patent number: 8895435
    Abstract: The method of forming a polysilicon layer is provided. A first polysilicon layer with a first grain size is formed on a substrate. A second polysilicon layer with a second grain size is formed on the first polysilicon layer. The first grain size is smaller than the second grain size. The first polysilicon layer with a smaller grain size can serve as a base for the following deposition, so that the second polysilicon layer formed thereon has a flatter topography, and thus, the surface roughness is reduced and the Rs uniformity within a wafer is improved.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: November 25, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Chien-Liang Lin, Yun-Ren Wang, Ying-Wei Yen, Wen-Yi Teng, Chan-Lon Yang
  • Patent number: 8889523
    Abstract: A semiconductor process includes the following steps. A substrate having a recess is provided. A decoupled plasma nitridation process is performed to nitride the surface of the recess for forming a nitrogen containing liner on the surface of the recess. A nitrogen containing annealing process is then performed on the nitrogen containing liner.
    Type: Grant
    Filed: January 2, 2012
    Date of Patent: November 18, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Te-Lin Sun, Chien-Liang Lin, Yu-Ren Wang, Ying-Wei Yen
  • Publication number: 20140322547
    Abstract: Described herein are coated glass or glass-ceramic articles having improved antimicrobial efficacy. Further described are methods of making and using the improved articles. The coated articles generally include a glass or glass-ceramic substrate and an antimicrobial coating disposed thereon. The antimicrobial coating is not a free-standing adhesive film, but a coating that is formed on or over at least a portion of a surface of the glass or glass-ceramic substrate.
    Type: Application
    Filed: April 23, 2014
    Publication date: October 30, 2014
    Applicant: CORNING INCORPORATED
    Inventors: Odessa Natalie Petzold, Wageesha Senaratne, Ying Wei
  • Publication number: 20140224526
    Abstract: The present invention provides a multi-layer flexible circuit board, comprising at least an electric circuit disposed on a vertical interval layer, wherein at least two sides of the electric circuit are covered by neighboring interval layer and another vertical interval composed layer of electric insulating material. The disclosure provides a non-pressing way to stack the multi-layer flexible circuit board, preventing fault crevice derived from a prior-known pressing way.
    Type: Application
    Filed: March 28, 2013
    Publication date: August 14, 2014
    Applicant: ICHIA TECHNOLOGIES, INC.
    Inventors: CHIEN-HWA CHIU, CHIH-MIN CHAO, PEIR-RONG KUO, CHIA-HUA CHIANG, CHIH-CHENG HSIAO, FENG-PING KUAN, YING-WEI LEE, YUNG-CHANG JUANG
  • Publication number: 20140224528
    Abstract: The present invention provides a flexible circuit board, comprising at least a multilayer unit disposed on a substrate, wherein the multilayer unit includes: an adhesion enhancing layer formed within the surface of the substrate, a first electrical conducting unit disposed on the adhesion enhancing layer, and a second electrical conducting layer formed on the first electrical conducting layer, wherein the adhesion enhancing layer is Palladium, the first electrical conducting layer is Nickel, and the substrate is composed of polyimide(PI).
    Type: Application
    Filed: March 28, 2013
    Publication date: August 14, 2014
    Applicant: ICHIA TECHNOLOGIES,INC.
    Inventors: CHIEN-HWA CHIU, CHIH-MIN CHAO, PEIR-RONG KUO, CHIA-HUA CHIANG, CHIH-CHENG HSIAO, FENG-PING KUAN, YING-WEI LEE, YUNG-CHANG JUANG
  • Publication number: 20140224527
    Abstract: A flexible circuit board comprises a substrate which has a polyimide layer recessed to define at least a compartment. The compartment includes an inner wall surface having a side wall and a bottom wall. The compartment is for containing a multilayer unit, wherein the multilayer unit includes an adhesion enhancing layer formed on the wall of the compartment, a first electrically conducting layer disposed on the adhesion enhancing layer, and a second electrically conducting layer formed on the first electrically conducting layer. The adhesion enhancing layer is palladium. The first electrically conducting layer is nickel. The substrate is composed of polyimide (PI).
    Type: Application
    Filed: August 15, 2013
    Publication date: August 14, 2014
    Applicant: ICHIA TECHNOLOGIES,INC.
    Inventors: CHIEN-HWA CHIU, CHIH-MIN CHAO, PEIR-RONG KUO, CHIA-HUA CHIANG, CHIH-CHENG HSIAO, FENG-PING KUAN, YING-WEI LEE, YUNG-CHANG JUANG
  • Patent number: 8802579
    Abstract: A semiconductor process includes the following steps. A substrate is provided. A dielectric layer having a high dielectric constant is formed on the substrate, wherein the steps of forming the dielectric layer include: (a) a metallic oxide layer is formed; (b) an annealing process is performed to the metallic oxide layer; and the steps (a) and (b) are performed repeatedly. Otherwise, the present invention further provides a semiconductor structure formed by said semiconductor process.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: August 12, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Chien-Liang Lin, Shao-Wei Wang, Yu-Ren Wang, Ying-Wei Yen
  • Publication number: 20140212467
    Abstract: The present disclosure is directed to an antimicrobial composite material, and more particularly to an antimicrobial composite material comprising particles having a metal or metal alloy core and a porous inorganic material shell, coatings including the antimicrobial composite material, and methods of making the same. In some embodiments, Cu—SiO2 core-shell particles are disclosed in which the Cu core provides antimicrobial activity and the porous SiO2 shell functions as a barrier for the Cu core, thus preventing the Cu core from being directly exposed to air or moisture.
    Type: Application
    Filed: September 7, 2012
    Publication date: July 31, 2014
    Inventors: Guohua Chen, Dayue Jiang, Joydeep Lahiri, Florence Verrier, Jianguo Wang, Ying Wei
  • Patent number: 8753744
    Abstract: The disclosure is directed to a chemically strengthened glass having antimicrobial properties and to a method of making such glass. In particular, the disclosure is directed to a chemically strengthened glass with antimicrobial properties and with a low surface energy coating on the glass that does not interfere with the antimicrobial properties of the glass. The antimicrobial has an Ag ion concentration on the surface in the range of greater than zero to 0.047 ?g/cm2. The glass has particular applications as antimicrobial shelving, table tops and other applications in hospitals, laboratories and other institutions handling biological substances, where color in the glass is not a consideration.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: June 17, 2014
    Assignee: Corning Incorporated
    Inventors: Nicholas Francis Borrelli, David Lathrop Morse, Wageesha Senaratne, Florence Verrier, Ying Wei
  • Publication number: 20140159211
    Abstract: A semiconductor structure includes a dielectric layer located on a substrate, wherein the dielectric layer includes nitrogen atoms, and the concentration of the nitrogen atoms in the dielectric layer is lower than 5% at a location wherein the distance between this location in the dielectric layer to the substrate is less than 20% of the thickness of the dielectric layer. Moreover, the present invention provides a semiconductor process including the following steps: a dielectric layer is formed on a substrate. Two annealing processes are performed in-situly on the dielectric layer, wherein the two annealing processes have different imported gases and different annealing temperatures.
    Type: Application
    Filed: December 10, 2012
    Publication date: June 12, 2014
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chien-Liang Lin, Yu-Ren Wang, Ying-Wei Yen
  • Patent number: 8741784
    Abstract: A process for fabricating a semiconductor device is described. A silicon oxide layer is formed. A nitridation process including at least two steps is performed to nitridate the silicon oxide layer into a silicon oxynitride (SiON) layer. The nitridation process comprises a first nitridation step and a second nitridation step in sequence, wherein the first nitridation step and the second nitridation step are different in the setting of at least one parameter.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: June 3, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Chien-Liang Lin, Te-Lin Sun, Ying-Wei Yen, Yu-Ren Wang
  • Publication number: 20140105953
    Abstract: The application discloses the formation of antimicrobial glass-ceramic articles having an amorphous phase and a crystalline phase and an antimicrobial agent selected from the group consisting of silver, copper and a mixture of silver and copper. The antimicrobial glass-ceramic can have a Log Reduction of >2.
    Type: Application
    Filed: October 11, 2012
    Publication date: April 17, 2014
    Inventors: George Halsey Beall, Nicholas Francis Borrelli, Robert Michel Morena, Charlene Marie Smith, Ying Wei
  • Publication number: 20140095088
    Abstract: A method for characterization of an energy storage device is disclosed. The method includes determining an instantaneous state of charge (SOC) value of the energy storage device during operation the energy storage device, and retrieving an instantaneous available discharging energy value of the energy storage device from a map based on a discharging power and the determined instantaneous SOC value of the energy storage device. The method further includes retrieving an instantaneous acceptable charging energy value of the energy storage device from another map based on a charging power and the determined instantaneous SOC value of the energy storage device.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Applicant: CATERPILLAR INC.
    Inventors: Wellington Ying-Wei KWOK, Igor Dos Santos RAMOS, Andrew Alfred KNITT, Justin Dale MIDDLETON
  • Patent number: 8685904
    Abstract: An aqueous lubricant emulsion for medical or food apparatus, comprising: (a) 5 wt % to 30 wt % of a mineral oil; (b) 5 wt % to 30 wt % of an emulsifier system consisting of two emulsifiers selected from the group consisting of sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, oleyl alcohol ether, triethanolamine oleate, wherein the mass ratio of the two emulsifiers is in a range of 2:8 to 8:2; (c) 0.5 wt % to 5 wt % of one or more coemulsifiers selected from the group consisting of fatty alcohols, long-chain fatty acids, and diisooctyl succinate sulfonates; and (d) the balance of water. A method for washing medical or food apparatus including the step of subjecting the medical or food apparatus to a treatment using the lubricant emulsion according to the invention after a washing step for the medical or food apparatus is also described.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: April 1, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Ying Wei Xie, Xiaolei Jia