Patents by Inventor Yiwu Tang

Yiwu Tang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160065195
    Abstract: Certain aspects of the present disclosure provide methods and apparatus for generating multiple oscillating signals having different phases. One example multiphase generating circuit generally includes a first phase shifting circuit configured to phase shift an input signal having an input frequency, such that an output signal of the first phase shifting circuit has a first phase difference with respect to the input signal; a first frequency dividing circuit configured to receive the input signal and output a first set of signals having a first frequency less than the input frequency of the input signal; and a second frequency dividing circuit configured to receive the output signal of the first phase shifting circuit and output a second set of signals having a second frequency less than the input frequency of the input signal. The multiphase signals may be used for fast frequency estimation of the input signal or in N-path filters.
    Type: Application
    Filed: August 28, 2014
    Publication date: March 3, 2016
    Inventors: Mohammad FARAZIAN, Serkan SAYILIR, Marco ZANUSO, Yiwu TANG
  • Patent number: 9271239
    Abstract: A device includes a multi-mode low noise amplifier (LNA) having a first amplifier stage, and a second amplifier stage coupled to the first amplifier stage, the second amplifier stage having a plurality of amplification paths configured to amplify a plurality of carrier frequencies, the first amplifier stage configured to bypass the second amplifier stage when the first amplifier stage is configured to amplify a single carrier frequency.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: February 23, 2016
    Assignee: Qualcomm Incorporated
    Inventors: Muhammad Hassan, Yiwu Tang, Klaas van Zalinge, Chuan Wang, Dongling Pan
  • Patent number: 9252790
    Abstract: Locking multiple VCOs to generate a plurality of LO frequencies, including: receiving a plurality of divided VCO feedback signals from a plurality of VCOs; receiving a reference signal multiplied by a predetermined number of the plurality of VCOs; generating and processing the predetermined number of phase differences between the multiplied reference signal and the plurality of divided VCO feedback signals in a single PLL circuit including a digital loop filter to receive and process the phase differences and generate (produce) a filter output, wherein the digital loop filter includes a plurality of delay cells equal to the predetermined number; and generating and outputting (delayed) control voltages for the plurality of VCOs based on the filter output.
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: February 2, 2016
    Assignee: QUALCOMM INCORPORATED
    Inventors: Yiwu Tang, Jong Min Park, Serkan Sayilir, Chiewcharn Narathong
  • Publication number: 20150349722
    Abstract: A device includes a load circuit configured to receive an amplified communication signal, the load circuit having a center tapped inductor structure configured to divide the amplified communication signal into a first portion and a second portion, the load circuit configured to resonate at a harmonic of the amplified communication signal.
    Type: Application
    Filed: May 30, 2014
    Publication date: December 3, 2015
    Applicant: QUALCOMM Incorporated
    Inventors: Chuan Wang, Dongling Pan, Yiwu Tang, Klaas van Zalinge, Muhammad Hassan
  • Publication number: 20150349907
    Abstract: Reconfiguring a transceiver design using a plurality of frequency synthesizers and a plurality of carrier aggregation (CA) receiver (Rx) and transmitter (Tx) chains, the method including: connecting a first frequency synthesizer to a first CA Tx chain; connecting the plurality of frequency synthesizers to the plurality of CA Rx chains, wherein a second frequency synthesizer of the plurality of frequency synthesizers is connected as a shared synthesizer to a first CA Rx chain and a second CA Tx chain.
    Type: Application
    Filed: October 13, 2014
    Publication date: December 3, 2015
    Inventors: Chiewcharn Narathong, Lai Kan Leung, Dongling Pan, Rajagopalan Rangarajan, Kevin Hsi-huai Wang, Bhushan Shanti Asuri, Yiwu Tang
  • Publication number: 20150349724
    Abstract: A device includes a main two-stage low noise amplifier (LNA) configured to amplify a carrier aggregation (CA) communication signal, the main two-stage LNA comprising a first LNA stage and a second LNA stage, an output of the first LNA stage having a first stage second order intermodulation product, the second LNA stage comprising a phase-inverter configured to phase-invert the output of the first LNA stage to generate a second stage phase-inverted output, and an auxiliary LNA stage coupled to the main two-stage LNA, the auxiliary LNA stage configured to cancel the first stage second order intermodulation product.
    Type: Application
    Filed: May 30, 2014
    Publication date: December 3, 2015
    Applicant: QUALCOMM Incorporated
    Inventors: Chuan Wang, Dongling Pan, Yiwu Tang, Klaas van Zalinge, Muhammad Hassan
  • Publication number: 20150334711
    Abstract: Methods and apparatus including: setting up a plurality of configurations for a plurality of local oscillator (LO) paths of a carrier aggregation (CA) transceiver operating with a plurality of bands; calculating and comparing frequencies for each LO path of the plurality of LO paths and at least one divider ratio of LO dividers for each band of the plurality of bands to identify frequency conflicts; and reconfiguring the LO dividers for the plurality of LO paths and the plurality of bands when the frequency conflicts are identified.
    Type: Application
    Filed: March 11, 2015
    Publication date: November 19, 2015
    Inventors: Rajagopalan Rangarajan, Chiewcharn Narathong, Lai Kan Leung, Dongling Pan, Aleksandar Miodrag Tasic, Yiwu Tang
  • Publication number: 20150333815
    Abstract: Certain aspects of the present disclosure provide multi-way diversity receivers with multiple synthesizers. Such a multi-way diversity receiver may be implemented in a carrier aggregation (CA) transceiver. One example wireless reception diversity circuit generally includes three or more receive paths for processing received signals and two or more frequency synthesizing circuits configured to generate local oscillating signals to downconvert the received signals. Each of the frequency synthesizing circuits is shared by at most two of the receive paths, and each pair of the frequency synthesizing circuits may generate a pair of local oscillating signals having the same frequency.
    Type: Application
    Filed: April 2, 2015
    Publication date: November 19, 2015
    Inventors: Lai Kan LEUNG, Chiewcharn NARATHONG, Rajagopalan RANGARAJAN, Dongling PAN, Yiwu TANG, Aleksandar Miodrag TASIC
  • Publication number: 20150333941
    Abstract: A radio frequency (RF) front end having multiple low noise amplifiers modules is disclosed. In an exemplary embodiment, an apparatus includes at least one first stage amplifier configured to amplify received carrier signals to generate at least one first stage carrier group. Each first stage carrier group includes a respective portion of the carrier signals. The apparatus also includes second stage amplifiers configured to amplify the first stage carrier groups. Each second stage amplifier configured to amplify a respective first stage carrier group to generate two second stage output signals that may be output to different demodulation stages where each demodulation stage demodulates a selected carrier signal.
    Type: Application
    Filed: March 27, 2015
    Publication date: November 19, 2015
    Inventors: Dongling Pan, Aleksandar Miodrag Tasic, Rajagopalan Rangarajan, Lai Kan Leung, Chiewcharn Narathong, Yiwu Tang
  • Publication number: 20150334710
    Abstract: Certain aspects of the present disclosure provide methods and apparatus for dynamically adjusting a voltage-controlled oscillator (VCO) frequency, a local oscillator (LO) divider ratio, and/or a receive path when adding or discontinuing reception of a component carrier (CC) in a carrier aggregation (CA) scheme. This dynamic adjustment is utilized to avoid (or at least reduce) VCO, LO, and transmit signal coupling issues with multiple component carriers, with minimal (or at least reduced) current consumption by the VCO and the LO divider.
    Type: Application
    Filed: March 3, 2015
    Publication date: November 19, 2015
    Inventors: Yiwu TANG, Rajagopalan RANGARAJAN, Chiewcharn NARATHONG, Lai Kan LEUNG, Aleksandar Miodrag TASIC, Dongling PAN
  • Publication number: 20150333949
    Abstract: Multiplex modules for use in carrier aggregation receivers are disclosed. In an exemplary embodiment, an apparatus includes an LNA multiplexer configured to receive a plurality of RF signals at a plurality of input terminals and to combine the RF signals into a combined RF signal that is output from an output terminal The apparatus also includes an LNA demultiplexer configured to receive the combined RF signal at an input port that is connected to the output terminal and to distribute the combined RF signal to a plurality of output ports.
    Type: Application
    Filed: March 20, 2015
    Publication date: November 19, 2015
    Inventors: Aleksandar Miodrag Tasic, Chiewcharn Narathong, Christian Holenstein, Dongling Pan, Yiwu Tang, Rajagopalan Rangarajan, Lai Kan Leung
  • Publication number: 20150333761
    Abstract: Aspects of a wireless apparatus for configuring a plurality of VCOs are provided. The apparatus may be a UE. The UE receives a configuration for a plurality of carriers. Each carrier corresponds to a different LO frequency. In addition, the UE determines a VCO frequency for generating each LO frequency. Further, the UE assigns each determined VCO frequency to each of a plurality of VCO modules based on a distance between the VCO modules and each of the determined VCO frequencies. The plurality of VCO modules are of a set of VCO modules including at least three VCO modules.
    Type: Application
    Filed: May 5, 2015
    Publication date: November 19, 2015
    Inventors: Lai Kan LEUNG, Chiewcharn NARATHONG, Rajagopalan RANGARAJAN, Dongling PAN, Yiwu TANG, Aleksandar Miodrag TASIC
  • Publication number: 20150295583
    Abstract: Locking multiple VCOs to generate a plurality of LO frequencies, including: receiving a plurality of divided VCO feedback signals from a plurality of VCOs; receiving a reference signal multiplied by a predetermined number of the plurality of VCOs; generating and processing the predetermined number of phase differences between the multiplied reference signal and the plurality of divided VCO feedback signals in a single PLL circuit including a digital loop filter to receive and process the phase differences and generate (produce) a filter output, wherein the digital loop filter includes a plurality of delay cells equal to the predetermined number; and generating and outputting (delayed) control voltages for the plurality of VCOs based on the filter output.
    Type: Application
    Filed: April 11, 2014
    Publication date: October 15, 2015
    Applicant: QUALCOMM INCORPORATED
    Inventors: Yiwu TANG, Jong Min PARK, Serkan SAYILIR, Chiewcharn NARATHONG
  • Publication number: 20150237583
    Abstract: A device includes a multi-mode low noise amplifier (LNA) having a first amplifier stage, and a second amplifier stage coupled to the first amplifier stage, the second amplifier stage having a plurality of amplification paths configured to amplify a plurality of carrier frequencies, the first amplifier stage configured to bypass the second amplifier stage when the first amplifier stage is configured to amplify a single carrier frequency.
    Type: Application
    Filed: February 14, 2014
    Publication date: August 20, 2015
    Applicant: QUALCOMM Incorporated
    Inventors: Muhammad Hassan, Yiwu Tang, Klaas van Zalinge, Chuan Wang, Dongling Pan
  • Patent number: 9106234
    Abstract: A method, an apparatus, and a computer program product are provided. The apparatus generates LO signals. The apparatus includes a LO generator module and an injection signal generator module coupled together. The LO generator module has a plurality of LO outputs and a plurality of injection signal inputs. The LO module is configured to generate the LO signals on the LO outputs based on injection signals received on the injection signal inputs. The injection signal generator module has a plurality of LO inputs and a plurality of injection signal outputs. The LO inputs are coupled to the LO outputs. The injection signal outputs are coupled to the injection signal inputs. The injection signal generator module is configured to generate injection signals on the injection signal outputs based on the LO signals received on the LO inputs and based on a received VCO signal.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: August 11, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Yunliang Zhu, Yiwu Tang
  • Patent number: 8988158
    Abstract: A method, an apparatus, and a computer program product are provided. The apparatus provides a VCO signal. The apparatus is a VCO. The apparatus includes a first transconductance circuit. The apparatus further includes a second transconductance circuit coupled with the first transconductance circuit. The second transconductance circuit has a first configuration/mode (e.g., CMOS configuration/mode) and a second configuration/mode (e.g., NMOS configuration/mode or PMOS configuration/mode). The second transconductance circuit is configured to couple an input of the second transconductance circuit to the first transconductance circuit in the first configuration/mode. The second transconductance circuit is configured to isolate the input of the second transconductance circuit from the first transconductance circuit in the second configuration/mode.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 24, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Sujiang Rong, Li Liu, Yiwu Tang
  • Publication number: 20140266479
    Abstract: A method, an apparatus, and a computer program product are provided. The apparatus provides a VCO signal. The apparatus is a VCO. The apparatus includes a first transconductance circuit. The apparatus further includes a second transconductance circuit coupled with the first transconductance circuit. The second transconductance circuit has a first configuration/mode (e.g., CMOS configuration/mode) and a second configuration/mode (e.g., NMOS configuration/mode or PMOS configuration/mode). The second transconductance circuit is configured to couple an input of the second transconductance circuit to the first transconductance circuit in the first configuration/mode. The second transconductance circuit is configured to isolate the input of the second transconductance circuit from the first transconductance circuit in the second configuration/mode.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: QUALCOMM INCORPORATED
    Inventors: Sujiang Rong, Li Liu, Yiwu Tang
  • Publication number: 20140266471
    Abstract: A method, an apparatus, and a computer program product are provided. The apparatus generates LO signals. The apparatus includes a LO generator module and an injection signal generator module coupled together. The LO generator module has a plurality of LO outputs and a plurality of injection signal inputs. The LO module is configured to generate the LO signals on the LO outputs based on injection signals received on the injection signal inputs. The injection signal generator module has a plurality of LO inputs and a plurality of injection signal outputs. The LO inputs are coupled to the LO outputs. The injection signal outputs are coupled to the injection signal inputs. The injection signal generator module is configured to generate injection signals on the injection signal outputs based on the LO signals received on the LO inputs and based on a received VCO signal.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: QUALCOMM INCORPORATED
    Inventors: Yunliang Zhu, Yiwu Tang
  • Publication number: 20140241335
    Abstract: A PLL operates in a first low bandwidth mode using a first control loop and in a second high bandwidth mode using a second control loop. The PLL includes a VCO that generates an output signal at a desired frequency used by a transmitter. When the transmitter switches from a High Power mode (HP TX) to a Low Power mode (LP TX), the PLL is perturbed (VCO no longer generates the desired frequency) and must resettle within an allocated time. In one example, the VCO frequency is 3.96 GHz and the settling time requirement is 25 microseconds. Upon switching from HP TX to LP TX, the PLL is switched to the second high bandwidth mode 15 microseconds and is then switched back to the first low bandwidth mode. The PLL resettles to within 1 ppm of the initial VCO frequency of 3.96 GHz within the allocated 25 microseconds.
    Type: Application
    Filed: February 28, 2013
    Publication date: August 28, 2014
    Applicant: QUALCOMM INCORPORATED
    Inventors: Xinhua Chen, Yiwu Tang
  • Publication number: 20140218124
    Abstract: An apparatus for generating an oscillating output signal includes an inductive-capacitive (LC) circuit and a current tuning circuit. The LC circuit includes a primary inductor and a varactor coupled to the primary inductor. A capacitance of the varactor is responsive to a voltage at a control input of the varactor. The current tuning circuit includes a secondary inductor and a current driving circuit coupled to the secondary inductor. The current driving circuit is responsive to a current at a control input of the current driving circuit. An effective inductance of the primary inductor is adjustable via magnetic coupling to the secondary inductor, and a frequency of the oscillating output signal is responsive to the effective inductance of the primary inductor and to the capacitance of the varactor.
    Type: Application
    Filed: February 1, 2013
    Publication date: August 7, 2014
    Applicant: QUALCOMM INCORPORATED
    Inventors: Yiwu Tang, Jianyun Hu, Chiewcharn Narathong