Patents by Inventor Yixiong Liu

Yixiong Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130136941
    Abstract: In one aspect, composite articles are described comprising multifunctional coatings. A composite article described herein, in some embodiments, comprises a substrate and a coating adhered to the substrate, the coating comprising an inner layer and an outer layer, the inner layer comprising a presintered metal or alloy and the outer layer comprising particles disposed in a metal or alloy matrix.
    Type: Application
    Filed: November 28, 2011
    Publication date: May 30, 2013
    Applicant: Kennametal Inc.
    Inventors: Qingjun Zheng, Piyamanee Komolwit, Yixiong Liu, Jim Faust, Jonathan Bitler, Srinivasarao Boddapati
  • Patent number: 8409702
    Abstract: Coated cutting tools are disclosed which have a hard coating that includes at least one aluminum titanium nitride layer having a single phase structure of B1 cubic phase and a composition of (AlxTi1-x)N, where x is in the range of about 0.46 to about 0.52 moles. The hard coatings also have a residual stress in the range of from about ?0.4 to about ?3 GPa as measured by the XRD Sin2 ? method, and a crystallographic orientation characterized by an x-ray diffraction (200) to (111) peak intensity ratio in the range of about 1 to about 14. Preferably the aluminum titanium nitride layer has an average crystallite size in the range of about 15 to about 50 nanometers. Methods of making such coated cutting tools are also disclosed.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: April 2, 2013
    Assignee: Kennametal Inc.
    Inventors: Wangyang Ni, Zhigang Ban, Ronald M. Penich, Yixiong Liu
  • Patent number: 8409695
    Abstract: A wear resistant multilayer nitride hard coating for substrates. The hard coating includes a first layer of titanium aluminum nitride and a second layer comprising a plurality of sublayer groups. Each sublayer group includes a first sublayer of titanium silicon nitride and a second sublayer of titanium aluminum nitride. The composition of the titanium aluminum nitride, both in the first layer and in the sublayer groups, is (TixAl1-x)N, wherein 0.4?x?0.6. The composition of the titanium silicon nitride sublayers is (TiySi1-y)N, wherein 0.85?y?0.98, and all of the silicon is in solid solution in the titanium silicon nitride such that no silicon phase or silicon nitride phase exists in this sublayer. The combined amount of aluminum and silicon present in the sublayer groups being narrowly controlled such that the sum of x and y is in the range of 1.38 to 1.46.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: April 2, 2013
    Assignee: Kennametal Inc.
    Inventors: Wangyang Ni, Yixiong Liu, Mark S. Greenfield, Ronald M. Penich
  • Publication number: 20130065081
    Abstract: A coated wear-resistant member, as well as a method for making the same, includes a substrate and a coating scheme. The coating scheme has a region of alternating coating sublayers. One coating sublayer is TixAlySi100-x-yN wherein 40 atomic percent?x?80 atomic percent; 15 atomic percent?y?55 atomic percent; 4 atomic percent?100-x-y?15 atomic percent. The other coating sublayer is TipAl100-pN wherein 45 atomic percent?p?100 atomic percent. The method for making a coated wear-resistant member includes the steps of providing the substrate, and depositing the region of alternating coating sublayers.
    Type: Application
    Filed: September 14, 2011
    Publication date: March 14, 2013
    Applicant: Kennametal Inc.
    Inventors: Wangyang Ni, Ronald M. Penich, Yixiong Liu
  • Publication number: 20130011692
    Abstract: A coated article has a substrate and a coating scheme, which has a PVD coating region. The PVD coating region contains aluminum, yttrium, nitrogen and at least one element selected from the group of titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten and silicon. The sum of the aluminum and yttrium contents is between about 3 atomic percent and about 55 atomic percent of the sum of aluminum, yttrium and the other elements. The yttrium content is between about 0.5 atomic percent and about 5 atomic percent of the sum of aluminum, yttrium and the other elements. There is also a method of making the coated article that includes steps of providing the substrate and depositing the above coating scheme with the PVD coating region.
    Type: Application
    Filed: July 8, 2011
    Publication date: January 10, 2013
    Applicant: Kennametal Inc.
    Inventors: Wangyang Ni, Ronald M. Penich, Yixiong Liu
  • Patent number: 8323783
    Abstract: A coated cutting insert for removing material from a workpiece that includes a substrate is disclosed. A wear-resistant coating on the substrate that includes an ?-alumina layer and a Zr— or Hf— carbonitride outer layer deposited on the ?-alumina layer. The Zr— or Hf— carbonitride outer layer is subjected to a post-coat wet blasting treatment. The wet blasting changes the stress condition of the exposed alumina coating layer from an initial tensile stress condition to a compressive stress condition.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: December 4, 2012
    Assignee: Kennametal Inc.
    Inventors: Volkmar Sottke, Zhigang Ban, Hartmut Westphal, Yixiong Liu, Michael Frank Beblo
  • Patent number: 8277958
    Abstract: Hard coatings and methods of making the hard coatings comprising aluminum titanium nitride which are usable on cutting tools are disclosed. The coatings include at least one aluminum titanium nitride layer having between about 0 and about 15 weight percent hexagonal phase and a composition of (AlxTi1-x)N, where x is in the range of about 0.53 to about 0.58 moles.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: October 2, 2012
    Assignee: Kennametal Inc.
    Inventors: Wangyang Ni, Ronald M. Penich, Yixiong Liu, Michael F. Beblo
  • Publication number: 20120244342
    Abstract: In one aspect, the present invention provides coated cutting tools comprising a PcBN substrate wherein a layer of single phase ?-alumina is deposited by chemical vapor deposition directly on one or more surfaces of the substrate.
    Type: Application
    Filed: March 25, 2011
    Publication date: September 27, 2012
    Applicant: Kennametal Inc.
    Inventors: Zhigang Ban, Yixiong Liu
  • Publication number: 20120237794
    Abstract: A coated article such as a coated cutting tool or coated wear part, which includes a substrate and a coating scheme on the substrate. The coating scheme has a titanium-containing coating layer, and an aluminum oxynitride coating layer on the titanium-containing coating layer. The aluminum oxynitride includes a mixture of phases having a hexagonal aluminum nitride type structure (space group: P63mc), a cubic aluminum nitride type structure (space group: Fm-3m), and optionally amorphous structure. The aluminum oxynitride coating layer has a composition of aluminum in an amount between about 20 atomic percent and about 50 atomic percent, nitrogen in an amount between about 40 atomic percent and about 70 atomic percent, and oxygen in an amount between about 1 atomic percent and about 20 atomic percent.
    Type: Application
    Filed: March 15, 2011
    Publication date: September 20, 2012
    Applicant: Kennametal Inc.
    Inventors: Volkmar Sottke, Hartmut Westphal, Hendrikus Van Den Berg, Zhigang Ban, Yixiong Liu, Mark S. Greenfield
  • Publication number: 20120225285
    Abstract: Coated substrates having high wear resistant coatings are disclosed. The coatings include at least one layer of either titanium oxycarbonitride or titanium aluminum oxycarbonitride, such that the layer has an oxygen to titanium atomic percent ratio in the range of about 0.01 to about 0.09 and an aluminum to titanium atomic percent ratio in the range of about 0 to about 0.1. The coatings have a hardness to Young's modulus ratio of at least 0.06. The substrate may be a cutting insert. Methods of making such coated substrates are also disclosed in which layers comprising titanium oxycarbonitride or titanium aluminum oxycarbonitride are deposited by medium temperature chemical vapor deposition (MT-CVD) on substrates in the temperature range of about 750 to about 950° C. using a mixture of gases wherein the ratio of the hydrogen gas to the nitrogen gas is greater than 5.
    Type: Application
    Filed: March 4, 2011
    Publication date: September 6, 2012
    Applicant: KENNAMETAL INC.
    Inventors: Zhigang Ban, Yixiong Liu, Mark S. Greenfield
  • Publication number: 20120201615
    Abstract: Coated cutting tools are disclosed which have a hard coating that includes at least one aluminum titanium nitride layer having a single phase structure of B1 cubic phase and a composition of (AlxTi1-x)N, where x is in the range of about 0.46 to about 0.52 moles. The hard coatings also have a residual stress in the range of from about ?0.4 to about ?3 GPa as measured by the XRD Sin2 ? method, and a crystallographic orientation characterized by an x-ray diffraction (200) to (111) peak intensity ratio in the range of about 1 to about 14. Preferably the aluminum titanium nitride layer has an average crystallite size in the range of about 15 to about 50 nanometers. Methods of making such coated cutting tools are also disclosed.
    Type: Application
    Filed: February 7, 2011
    Publication date: August 9, 2012
    Applicant: KENNAMETAL INC.
    Inventors: Wangyang Ni, Zhigang Ban, Ronald M. Penich, Yixiong Liu
  • Publication number: 20120128955
    Abstract: A coated cutting insert for removing material from a workpiece that includes a substrate is disclosed. A wear-resistant coating on the substrate that includes an alumina layer and a Zr- or Hf-carbonitride outer layer deposited on the alumina layer. The Zr- or Hf-carbonitride outer layer is subjected to a post-coat wet blasting treatment. The wet blasting changes the stress condition of the exposed alumina coating layer from an initial tensile stress condition to a compressive stress condition.
    Type: Application
    Filed: November 18, 2011
    Publication date: May 24, 2012
    Applicant: Kennametal Inc.
    Inventors: Peter Leicht, Mark Greenfield, Volkmar Sottke, Zhigang Ban, Hartmut Westphal, Yixiong Liu, Michael Frank Beblo
  • Patent number: 8080323
    Abstract: A coated cutting insert for use in a chip-forming material removal operation wherein the coated cutting insert includes a substrate that has a flank surface and a rake surface and the flank surface intersects the rake surface to form a cutting edge at the intersection. There is a wear-resistant coating scheme that adheres to at least a portion of the substrate. The wear-resistant coating scheme includes one or more coating layers of one or more of alumina, hafnia and zirconia. There is a wear indicating coating that adheres to at least a portion of the wear-resistant coating scheme. The wear indicating coating includes M(OxCyNz) wherein M is selected from the group comprising one or more of the following titanium, hafnium, zirconium, chromium, titanium-aluminum alloy, hafnium-aluminum alloy, zirconium-aluminum alloy, chromium-aluminum alloy, and their alloys, and x>0, y?0, z?0 and y+z>0.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: December 20, 2011
    Assignee: Kennametal Inc.
    Inventors: Zhigang Ban, Mark J. Rowe, Yixiong Liu, Alfred S. Gates, Jr., Kent P. Mizgalski, Mark S. Greenfield
  • Publication number: 20110293909
    Abstract: A wear resistant multilayer nitride hard coating for substrates. The hard coating includes a first layer of titanium aluminum nitride and a second layer comprising a plurality of sublayer groups. Each sublayer group includes a first sublayer of titanium silicon nitride and a second sublayer of titanium aluminum nitride. The composition of the titanium aluminum nitride, both in the first layer and in the sublayer groups, is (TixAl1-x)N, wherein 0.4?x?0.6. The composition of the titanium silicon nitride sublayers is (TiySi1-y)N, wherein 0.85?y?0.98, and all of the silicon is in solid solution in the titanium silicon nitride such that no silicon phase or silicon nitride phase exists in this sublayer. The combined amount of aluminum and silicon present in the sublayer groups being narrowly controlled such that the sum of x and y is in the range of 1.38 to 1.46.
    Type: Application
    Filed: May 28, 2010
    Publication date: December 1, 2011
    Applicant: KENNAMETAL, INC.
    Inventors: Wangyang Ni, Yixiong Liu, Mark S. Greenfield, Ronald M. Penich
  • Patent number: 7947363
    Abstract: A coated article that includes a substrate and a wear-resistant coating scheme. The coated article may be a cutting insert shown to improve performance in chip-forming material removal operations or a wear-resistant component used in chipless forming operations. The wear-resistant coating scheme has an underlayer and top layer containing aluminum, chromium, and nitrogen. The coating scheme also includes a mediate multi-periodicity nanolayer coating scheme containing titanium, aluminum, chromium and nitrogen. The mediate multi-periodicity nanolayer coating scheme includes a plurality of sets of alternating layer arrangements. Each one of the alternating layer arrangements has a base layer comprising titanium, aluminum and nitrogen and a nanolayer region having a plurality of sets of alternating nanolayers. Each set of alternating nanolayers has one nanolayer having aluminum, chromium, titanium and nitrogen and another nanolayer having aluminum, chromium, titanium and nitrogen.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: May 24, 2011
    Assignees: Kennametal Inc., Oerlikon Trading Ltd.
    Inventors: Fengting Xu, Wangyang Ni, Ronald M. Penich, Yixiong Liu, Volker-Hermann Derflinger, Dennis T. Quinto, Charles E. Bauer, Qian Ding
  • Publication number: 20110107679
    Abstract: A coated cutting insert for removing material from a workpiece that includes a substrate is disclosed. A wear-resistant coating on the substrate that includes an ?-alumina layer and a Zr— or Hf— carbonitride outer layer deposited on the ?-alumina layer. The Zr— or Hf— carbonitride outer layer is subjected to a post-coat wet blasting treatment. The wet blasting changes the stress condition of the exposed alumina coating layer from an initial tensile stress condition to a compressive stress condition.
    Type: Application
    Filed: November 10, 2009
    Publication date: May 12, 2011
    Applicant: KENNAMETAL INC.
    Inventors: Volkmar Sottke, Zhigang Ban, Hartmut Westphal, Yixiong Liu, Michael Frank Beblo
  • Publication number: 20110081539
    Abstract: Hard coatings and methods of making the hard coatings comprising aluminum titanium nitride which are usable on cutting tools are disclosed. The coatings include at least one aluminum titanium nitride layer having between about 0 and about 15 weight percent hexagonal phase and a composition of (AlxTi1-x)N, where x is in the range of about 0.53 to about 0.58 moles.
    Type: Application
    Filed: October 2, 2009
    Publication date: April 7, 2011
    Applicant: Kennametal, Inc.
    Inventors: Wangyang Ni, Ronald M. Penich, Yixiong Liu, Michael F. Beblo
  • Publication number: 20110064530
    Abstract: A coated ceramic cutting insert for removing material from a workpiece, as well as a method for making the same, that includes a ceramic substrate with a rake surface and at least one flank surface wherein a cutting edge is at the juncture therebetween. A wear-resistant coating scheme that includes an alumina-containing base coating layer region, which has at least one exposed alumina coating layer, deposited by chemical vapor deposition on the substantially all of the surfaces of the ceramic substrate that experience wear during removal of material from the workpiece. The exposed alumina coating layer exhibits a blasted stress condition ranging between about 50 MPa (tensile stress) and about ?2 GPa (compressive) as measured by XRD using the Psi tilt method and the (024) reflection of alumina. The exposed alumina coating layer is the result of wet blasting a titanium-containing outer coating layer region from the surface of the alumina-containing base coating layer region.
    Type: Application
    Filed: March 11, 2010
    Publication date: March 17, 2011
    Applicant: Kennametal Inc.
    Inventors: Zhigang Ban, Alfred Gates, JR., Yixiong Liu, Jie Wu
  • Publication number: 20100255345
    Abstract: A coated polycrystalline cubic boron nitride cutting insert useful in a cutting tool for removing material from a workpiece, and a method for making the same. The cutting insert including a polycrystalline cubic boron nitride substrate with a rake surface and at least one flank surface, and a cutting edge formed at the juncture between the rake surface and the flank surface. A wear-resistant coating scheme is on the polycrystalline cubic boron nitride substrate. The wear-resistant coating scheme includes the following coating layers. An inner coating layer region is on at least some of the rake surface and at least some of the flank surface of the polycrystalline cubic boron nitride substrate. An alumina-containing coating layer region, which has at least one exposed alumina coating layer, is on the inner coating layer region.
    Type: Application
    Filed: March 11, 2010
    Publication date: October 7, 2010
    Applicant: Kennametal Inc.
    Inventors: Zhigang Ban, Yixiong Liu
  • Publication number: 20090155559
    Abstract: A coated article that includes a substrate and a wear-resistant coating scheme. The coated article may be a cutting insert shown to improve performance in chip-forming material removal operations or a wear-resistant component used in chipless forming operations. The wear-resistant coating scheme has an underlayer and top layer containing aluminum, chromium, and nitrogen. The coating scheme also includes a mediate multi-periodicity nanolayer coating scheme containing titanium, aluminum, chromium and nitrogen. The mediate multi-periodicity nanolayer coating scheme includes a plurality of sets of alternating layer arrangements. Each one of the alternating layer arrangements has a base layer comprising titanium, aluminum and nitrogen and a nanolayer region having a plurality of sets of alternating nanolayers. Each set of alternating nanolayers has one nanolayer having aluminum, chromium, titanium and nitrogen and another nanolayer having aluminum, chromium, titanium and nitrogen.
    Type: Application
    Filed: December 14, 2007
    Publication date: June 18, 2009
    Inventors: Fengting Xu, Wangyang Ni, Ronald M. Penich, Yixiong Liu, Volker-Hermann Derflinger, Dennis T. Quinto, Charles E. Bauer, Qian Ding