Patents by Inventor Yong-Hoon Son

Yong-Hoon Son has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090242966
    Abstract: In a vertical-type memory device and a method of manufacturing the vertical-type memory device, the vertical memory device includes an insulation layer pattern of a linear shape provided on a substrate, pillar-shaped single-crystalline semiconductor patterns provided on both sidewalls of the insulation layer pattern and transistors provided on a sidewall of each of the single-crystalline semiconductor patterns. The transistors are arranged in a vertical direction of the single-crystalline semiconductor pattern, and thus the memory device may be highly integrated.
    Type: Application
    Filed: February 27, 2009
    Publication date: October 1, 2009
    Applicant: Sumsung Electronics Co., Ltd.
    Inventors: Yong-Hoon Son, Jong-Wook Lee, Jong-Hyuk Kang
  • Patent number: 7566602
    Abstract: In a method of forming a single crystalline semiconductor layer, an amorphous layer may be formed on a seed layer that includes a single crystalline material. The single crystalline layer may be formed from the amorphous layer by irradiating a laser beam onto the amorphous layer using the seed layer as a seed for a phase change of the amorphous layer. The laser beam may have an energy for melting the amorphous layer, and the laser beam may be irradiated onto the amorphous layer without generating a superimposedly irradiated region of the amorphous layer. The single crystalline layer may include a high density of large-sized grains without generating a protrusion thereon through a simple process so that a semiconductor device including the single crystalline layer may have a high degree of integration and improved electrical characteristics.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: July 28, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Hoon Son, Si-Young Choi, Jong-Wook Lee
  • Patent number: 7560319
    Abstract: A method of fabricating a semiconductor device includes forming an insulation layer structure on a single-crystalline silicon substrate, forming a first insulation layer structure pattern comprising a first opening by etching a portion of the insulation layer structure, filling the first opening with a non-single-crystalline silicon layer, and forming a single-crystalline silicon pattern by irradiating a first laser beam onto the non-single-crystalline silicon layer. The method also includes forming a second insulation layer structure pattern comprising a second opening by etching a portion of the first insulation layer structure, filling the second opening with a non-single-crystalline silicon-germanium layer, and forming a single-crystalline silicon-germanium pattern by irradiating a second laser beam onto the non-single-crystalline silicon-germanium layer.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: July 14, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Kwan Kang, Yu-Gyun Shin, Jong-Wook Lee, Yong-Hoon Son
  • Patent number: 7553742
    Abstract: A method of forming a thin layer including providing a first single-crystalline silicon layer partially exposed through an opening in an insulation pattern and forming an epitaxial layer on the first single-crystalline silicon layer and forming an amorphous silicon layer on the insulation pattern, the amorphous silicon layer having a first portion adjacent the epitaxial layer and a second portion spaced apart from the first portion, wherein the amorphous silicon layer is formed on the insulation pattern at substantially the same rate at the first portion and at a second portion. The amorphous silicon layer may be formed to a uniform thickness without a thinning defect.
    Type: Grant
    Filed: January 11, 2006
    Date of Patent: June 30, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Hoon Son, Yu-Gyun Shin, Jong-Wook Lee
  • Publication number: 20090155971
    Abstract: In a semiconductor device and a method of manufacturing the same, a conductive structure is formed on an active region defined by a device isolation layer on a semiconductor substrate. The conductive structure includes a gate pattern and source/drain regions adjacent to the gate pattern. A first semiconductor layer is formed on the active region by a selective epitaxial growth (SEG) process. An amorphous layer is formed on the first semiconductor layer. A second semiconductor layer is formed from a portion of the amorphous layer by a solid-phase epitaxy (SPE) process. Elevated structures are formed on the source/drain regions by removing a remaining portion of the amorphous layer from the substrate so the elevated structure includes the first semiconductor layer and the second semiconductor layer stacked on the first semiconductor layer. The device isolation layer may be prevented from being covered with the elevated structures, to thereby prevent contact failures.
    Type: Application
    Filed: December 15, 2008
    Publication date: June 18, 2009
    Inventors: Yong-Hoon Son, Jong-Wook Lee
  • Publication number: 20090155979
    Abstract: In a semiconductor device and a method of manufacturing the same, a first insulation layer is removed from a cell area of a substrate and a first active pattern is formed on the first area by a laser-induced epitaxial growth (LEG) process. Residuals of the first insulation layer are passively formed into a first device isolation pattern on the first area. The first insulation layer is removed from the second area of the substrate and a semiconductor layer is formed on the second area of the substrate by a SEG process. The semiconductor layer on the second area is patterned into a second active pattern including a recessed portion and a second insulation pattern in the recessed portion is formed into a second device isolation pattern on the second area. Accordingly, grain defects in the LEG process and lattice defects in the SEG process are mitigated or eliminated.
    Type: Application
    Filed: December 16, 2008
    Publication date: June 18, 2009
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Yong-Hoon Son, Jong-Wook Lee
  • Publication number: 20090142892
    Abstract: A method of fabricating a semiconductor device includes forming a buffer pattern on a substrate, the buffer pattern including germanium, recrystallizing the buffer pattern to form a strained relaxation buffer pattern, and forming a tensile silicon cap on the strained relaxation buffer pattern, the cap being under tensile strain.
    Type: Application
    Filed: November 19, 2007
    Publication date: June 4, 2009
    Inventors: Byeong-Chan Lee, Si-Young Choi, Yong-Hoon Son, In-Soo Jung, Min-Gu Kang, Pil-Kyu Kang
  • Patent number: 7537980
    Abstract: In a method of manufacturing a stacked semiconductor device, a seed layer including impurity regions may be prepared. A first insulation interlayer pattern having a first opening may be formed on the seed layer. A first SEG process may be carried out to form a first plug partially filling the first opening. A second SEG process may be performed to form a second plug filling the first opening. A third SEG process may be carried out to form a first channel layer on the first insulation interlayer pattern. A second insulation interlayer may be formed on the first channel layer. The second insulation interlayer, the first channel layer and the second plug arranged on the first plug may be removed to expose the first plug. The first plug may be removed to form a serial opening. The serial opening may be filled with a metal wiring.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: May 26, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Hoon Son, Yu-Gyun Shin, Jong-Wook Lee
  • Patent number: 7534686
    Abstract: Disclosed is a semiconductor fin construction useful in FinFET devices that incorporates an upper region and a lower region with wherein the upper region is formed with substantially vertical sidewalls and the lower region is formed with inclined sidewalls to produce a wider base portion. The disclosed semiconductor fin construction will also typically include a horizontal step region at the interface between the upper region and the lower region. Also disclosed are a series of methods of manufacturing semiconductor devices incorporating semiconductor fins having this dual construction and incorporating various combinations of insulating materials such as silicon dioxide and/or silicon nitride for forming shallow trench isolation (STI) structures between adjacent semiconductor fins.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: May 19, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Deok Hyung Lee, Byeong Chan Lee, In Soo Jung, Yong Hoon Son, Siyoung Choi, Taek Jung Kim
  • Publication number: 20090121271
    Abstract: In a semiconductor device, and a method of manufacturing thereof, the device comprises a substrate of single-crystal semiconductor material extending in a horizontal direction and a plurality of interlayer dielectric layers on the substrate. A plurality of gate patterns are provided, each gate pattern being between a neighboring lower interlayer dielectric layer and a neighboring upper interlayer dielectric layer. A vertical channel of single-crystal semiconductor material extends in a vertical direction through the plurality of interlayer dielectric layers and the plurality of gate patterns, a gate insulating layer being between each gate pattern and the vertical channel that insulates the gate pattern from the vertical channel.
    Type: Application
    Filed: November 3, 2008
    Publication date: May 14, 2009
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Yong-Hoon Son, Jong-Wook Lee
  • Publication number: 20090104759
    Abstract: Methods for manufacturing a semiconductor device include forming a seed layer containing a silicon material on a substrate. An amorphous silicon layer containing amorphous silicon material is formed on the seed layer. The amorphous silicon layer is doped with an impurity. A laser beam is irradiated onto the amorphous silicon layer to produce a phase change of the amorphous silicon layer and change the amorphous silicon layer into a single-crystal silicon layer based on the seed layer.
    Type: Application
    Filed: September 23, 2008
    Publication date: April 23, 2009
    Inventors: Pil-Kyu Kang, Yong-Hoon Son, Jong-Wook Lee
  • Patent number: 7521301
    Abstract: Integrated circuit field effect transistors include an integrated circuit substrate and a fin that projects away from the integrated circuit substrate, extends along the integrated circuit substrate, and includes a top that is remote from the integrated circuit substrate. A channel region is provided in the fin that is doped a conductivity type and has a higher doping concentration of the conductivity type adjacent the top than remote from the top. A source region and a drain region are provided in the fin on opposite sides of the channel region, and an insulated gate electrode extends across the fin adjacent the channel region. Related fabrication methods also are described.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: April 21, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Deok-Hyung Lee, Byeong-Chan Lee, Si-Young Choi, Taek-Jung Kim, Yong-Hoon Son, In-Soo Jung
  • Patent number: 7494877
    Abstract: A method of forming a semiconductor device may include forming a fin structure extending from a substrate. The fin structure may include first and second source/drain regions and a channel region therebetween, and the first and second source/drain regions may extend a greater distance from the substrate than the channel region. A gate insulating layer may be formed on the channel region, and a gate electrode may be formed on the gate insulating layer so that the gate insulating layer is between the gate electrode and the channel region. Related devices are also discussed.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: February 24, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Deok-Hyung Lee, Si-Young Choi, Byeong-Chan Lee, Yong-Hoon Son, In-Soo Jung
  • Patent number: 7470603
    Abstract: Methods of fabricating a semiconductor device are provided. A semiconductor substrate is provided that includes a single crystalline structure within at least a defined region thereof. A thin layer is formed on the semiconductor substrate. The thin layer is patterned to form a plurality of spaced apart field structures and to expose therebetween portions of the semiconductor substrate having the single crystalline structure. A non-crystalline layer is formed on the exposed portions of the semiconductor substrate having the single crystalline structure. The non-crystalline layer is planarized to expose upper surfaces of the field structures and define non-crystalline active structures from the non-crystalline layer between the field structures. A laser beam is generated that heats the non-crystalline active structures to change them into single crystalline active structures having substantially the same single crystalline structure as the defined region of the semiconductor substrate.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: December 30, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Won Cha, Sung-Kwan Kang, Pil-Kyu Kang, Yong-Hoon Son, Jong-Wook Lee
  • Publication number: 20080308845
    Abstract: Embodiments of the present invention include heterogeneous substrates, integrated circuits formed on such heterogeneous substrates. The heterogeneous substrates according to certain embodiments of the present invention include a first Group IV semiconductor layer (e.g., silicon), a second Group IV pattern (e.g., a silicon-germanium pattern) that includes a plurality of individual elements on the first Group IV semiconductor layer, and a third Group IV semiconductor layer (e.g., a silicon epitaxial layer) on the second Group IV pattern and on a plurality of exposed portions of the first Group IV semiconductor layer. The second Group IV pattern may be removed in embodiments of the present invention. In these and other embodiments of the present invention, the third Group IV semiconductor layer may be planarized.
    Type: Application
    Filed: August 21, 2008
    Publication date: December 18, 2008
    Inventors: Sung-Min Kim, Kyoung-Hwan Yeo, In-Soo Jung, Si-Young Choi, Dong-Won Kim, Yong-Hoon Son, Young-Eun Lee, Byeong-Chan Lee, Jong-Wook Lee
  • Patent number: 7459353
    Abstract: A method of forming an integrated circuit can be provided by successively laterally forming single crystalline thin film regions from an amorphous thin film using a lower single crystalline seed layer.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: December 2, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Hoon Son, Yu-Gyun Shin, Jong-Wook Lee
  • Publication number: 20080293224
    Abstract: In a method of forming a diode, a first amorphous thin film doped with first impurities is formed on a single crystalline substrate. A second amorphous thin film doped with second impurities is formed on the first amorphous thin film. A laser beam having sufficient energy to melt both of the first and second amorphous thin films is irradiated on the first and second amorphous thin films to change crystal structures of the first and second amorphous thin films using the single crystalline substrate as a seed, so that first and second single crystalline thin films are sequentially formed on the single crystalline substrate.
    Type: Application
    Filed: May 23, 2008
    Publication date: November 27, 2008
    Inventors: Yong-Hoon Son, Si-Young Choi, Jong-Wook Lee
  • Publication number: 20080248628
    Abstract: Methods of forming integrated circuit devices include forming an electrically insulating layer having a semiconductor fin structure extending therethrough. This semiconductor fin structure may include at least one amorphous and/or polycrystalline semiconductor region therein. The at least one amorphous and/or polycrystalline semiconductor region within the semiconductor fin structure is then converted into a single crystalline semiconductor region. This semiconductor fin structure is then used as an active region of a semiconductor device.
    Type: Application
    Filed: March 27, 2008
    Publication date: October 9, 2008
    Inventors: Yong-Hoon Son, Si-Young Choi, Jong-Wook Lee
  • Patent number: 7432173
    Abstract: In some methods of fabricating a silicon-on-insulator substrate, a semiconductor substrate is provided that includes a single crystalline structure within at least a defined region thereof. A first insulating film is formed on the defined region of the semiconductor substrate with an opening that exposes a portion of the defined region of the semiconductor substrate having the single crystalline structure. A first non-single crystalline film is formed on the exposed portion of the semiconductor substrate and that at least substantially fills the opening in the first insulating film. A laser beam is generated that heats the first non-single crystalline film to change the first non-single crystalline film into a first single crystalline film having substantially the same single crystalline structure as the defined region of the semiconductor substrate.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: October 7, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sungkwan Kang, Yong-Hoon Son, Jongwook Lee, Yugyun Shin
  • Patent number: 7429504
    Abstract: Embodiments of the present invention include heterogeneous substrates, integrated circuits formed on such heterogeneous substrates, and methods of forming such substrates and integrated circuits. The heterogeneous substrates according to certain embodiments of the present invention include a first Group IV semiconductor layer (e.g., silicon), a second Group IV pattern (e.g., a silicon-germanium pattern) that includes a plurality of individual elements on the first Group IV semiconductor layer, and a third Group IV semiconductor layer (e.g., a silicon epitaxial layer) on the second Group IV pattern and on a plurality of exposed portions of the first Group IV semiconductor layer. The second Group IV pattern may be removed in embodiments of the present invention. In these and other embodiments of the present invention, the third Group IV semiconductor layer may be planarized.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: September 30, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Min Kim, Kyoung-Hwan Yeo, In-Soo Jung, Si-Young Choi, Dong-Won Kim, Yong-Hoon Son, Young-Eun Lee, Byeong-Chan Lee, Jong-Wook Lee