Patents by Inventor Yong K. Cho

Yong K. Cho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220061678
    Abstract: A system comprises a sensor device and processing circuitry. The sensor device comprises a housing configured to be disposed above shoulders of a patient, a plurality of electrodes on the housing, a motion sensor, and sensing circuitry configured to sense a brain electrical signal and a cardiac electrical signal via the electrodes, and a motion signal via the motion sensor. The processing circuitry is configured to determine values over time of one or more parameters from the brain electrical signal, determine values over time of one or more parameters from the cardiac electrical signal, and generate at least one of a detection, prediction, or a classification a condition of the patient based on the values and the motion signal.
    Type: Application
    Filed: August 27, 2021
    Publication date: March 3, 2022
    Inventors: Randal C. Schulhauser, Jonathon E. Giftakis, Eric J. Panken, John Wainwright, Nathalie Virag, Paul G. Krause, Yong K. Cho, Scott DeFoe, Avram Scheiner, Ekaterina M. Ippolito, David A. Anderson, Saul E. Greenhut, Mark R. Boone, Richard J. O'Brien
  • Publication number: 20220023515
    Abstract: A method of cooling a mammal with an implantable blood pump. The method includes measuring a temperature of an internal controller, the internal controller being in communication with the implantable blood pump. an alert is generated if the temperature of the internal controller exceeds a predetermined temperature threshold.
    Type: Application
    Filed: July 22, 2020
    Publication date: January 27, 2022
    Inventors: Michael D. Eggen, Yong K. Cho, Avram Scheiner, Ramesh Raghupathy, Thomas W. Radtke
  • Patent number: 11229796
    Abstract: A device and method are described for transmitting tissue conductance communication (TCC) signals. A device may be is configured to establish a transmission window by transmitting a TCC test signal at multiple time points over a transmission test period to a receiving device and detect at least one response to the transmitted TCC test signals performed by the receiving device. The IMD is configured to establish the transmission window based on the at least one detected response so that the transmission window is correlated to a time of relative increased transimpedance between a transmitting electrode vector and receiving electrode vector during the transmission test period.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: January 25, 2022
    Assignee: Medtronic Inc.
    Inventors: Yanzhu Zhao, Yong K. Cho, Michael D. Eggen, Wei Gan, Kathryn Hilpisch, Srikara V. Peelukhana, Darrell J. Swenson, Joshua J. Blauer
  • Publication number: 20210370044
    Abstract: A controller for an implantable blood pump, includes an accelerometer configured to measure at least one from the group consisting of position and movement of the controller. Processing circuitry is configured to control operation of the implantable blood pump, the processing circuitry being in communication with the accelerometer, the processing circuitry being configured to adjust a speed of the implantable blood pump if the measured at least one from the group consisting of position and movement deviates from a respective predetermined threshold.
    Type: Application
    Filed: May 20, 2021
    Publication date: December 2, 2021
    Inventors: Yong K. Cho, Michael F. Hess, Michael E. Eggen, Michael C. Brown, Michael Reinert
  • Publication number: 20210353946
    Abstract: An intracardiac pacemaker system is configured to produce physiological atrial event signals by a sensing circuit of a ventricular intracardiac pacemaker and select a first atrial event input as the physiological atrial event signals. The ventricular intracardiac pacemaker detects atrial events from the selected first atrial event input, determines if input switching criteria are met, and switches from the first atrial event input to a second atrial event input in response to the input switching criteria being met. The second atrial event input includes broadcast atrial event signals produced by a second implantable medical device and received by the ventricular intracardiac pacemaker.
    Type: Application
    Filed: August 2, 2021
    Publication date: November 18, 2021
    Inventors: Wade M. DEMMER, Yong K. CHO, Mark K. ERICKSON, Todd J. SHELDON
  • Patent number: 11077307
    Abstract: An intracardiac pacemaker system is configured to produce physiological atrial event signals by a sensing circuit of a ventricular intracardiac pacemaker and select a first atrial event input as the physiological atrial event signals. The ventricular intracardiac pacemaker detects atrial events from the selected first atrial event input, determines if input switching criteria are met, and switches from the first atrial event input to a second atrial event input in response to the input switching criteria being met. The second atrial event input includes broadcast atrial event signals produced by a second implantable medical device and received by the ventricular intracardiac pacemaker.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: August 3, 2021
    Assignee: Medtronic, Inc.
    Inventors: Wade M. Demmer, Yong K. Cho, Mark K. Erickson, Todd J. Sheldon
  • Publication number: 20210170083
    Abstract: Various embodiments of an implantable medical device and a method of implanting such device are disclosed. The device includes a housing having a first major surface, a second major surface, a sidewall that extends between the first major surface and the second major surface, and a port disposed in the sidewall. The sidewall defines a perimeter of the housing. The device further includes an electronic component disposed within the housing, and a cable electrically connected to the electronic component disposed within the housing, where the cable extends through the port. A portion of the cable is adapted to be removably connected to the housing adjacent an outer surface of the sidewall by a fastener such that the portion of the cable extends along at least a portion of the perimeter of the housing when the portion of the cable is removably connected to the housing.
    Type: Application
    Filed: November 30, 2020
    Publication date: June 10, 2021
    Inventors: Kevin Seifert, Yong K. Cho, Michael D. Eggen, David J. Peichel, Thomas W. Radtke, Pankti Shah, Jason D. Hamack
  • Publication number: 20210077815
    Abstract: An intracardiac ventricular pacemaker is configured to operate in in a selected one of an atrial-tracking ventricular pacing mode and a non-atrial tracking ventricular pacing mode. A control circuit of the pacemaker determines at least one motion signal metric from the motion signal, compares the at least one motion signal metric to pacing mode switching criteria, and, responsive to the pacing mode switching criteria being satisfied, switches from the selected one of the non-atrial tracking pacing mode and the atrial tracking pacing mode to the other one of the non-atrial tracking pacing mode and the atrial tracking pacing mode for controlling ventricular pacing pulses delivered by the pacemaker.
    Type: Application
    Filed: November 30, 2020
    Publication date: March 18, 2021
    Inventors: Todd J. SHELDON, Yong K. CHO, Wade M. DEMMER, Mark K. ERICKSON, Vincent E. SPLETT
  • Patent number: 10864377
    Abstract: An intracardiac ventricular pacemaker is configured to operate in in a selected one of an atrial-tracking ventricular pacing mode and a non-atrial tracking ventricular pacing mode. A control circuit of the pacemaker determines at least one motion signal metric from the motion signal, compares the at least one motion signal metric to pacing mode switching criteria, and, responsive to the pacing mode switching criteria being satisfied, switches from the selected one of the non-atrial tracking pacing mode and the atrial tracking pacing mode to the other one of the non-atrial tracking pacing mode and the atrial tracking pacing mode for controlling ventricular pacing pulses delivered by the pacemaker.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: December 15, 2020
    Assignee: Medtronic, Inc.
    Inventors: Todd J. Sheldon, Yong K. Cho, Wade M. Demmer, Mark K. Erickson, Vincent E. Splett
  • Publication number: 20200384174
    Abstract: A controller for an implantable medical device including a housing sized and configured to be received within a patient, the housing having a thermally conductive shell defining an exterior surface. At least a portion of the exterior surface of the thermally conductive shell defines at least one from the group consisting of a plurality of corrugations and a plurality of protuberances.
    Type: Application
    Filed: May 28, 2020
    Publication date: December 10, 2020
    Inventors: Michael D. EGGEN, Yong K. CHO, D'Anne E. KUDLIK
  • Publication number: 20200368540
    Abstract: Techniques for minimizing rate of depletion of a non-rechargeable power source, to extend the operational lifetime of an implantable medical device that includes the non-rechargeable power source, by enforcing operational-mode-specific communication protocols whereby inter-device communication between the implantable medical device and another implantable medical device is such that level of power draw from the non-rechargeable power source by the implantable medical device is less than level of power draw from the rechargeable power source by the another implantable medical device for the implantable medical devices to engage in communication with each other.
    Type: Application
    Filed: August 11, 2020
    Publication date: November 26, 2020
    Inventors: Wade M. Demmer, Yong K. Cho, Michael F. Hess, Todd J. Sheldon
  • Publication number: 20200359959
    Abstract: Sensing circuitry of an implantable medical device (IMD) system may sense a cardiac signal that varies according to a cardiac cycle of a patient. Processing circuitry of the IMD system may determine a series of consecutive cardiac cycle length metric values based on the sensed cardiac signal, identify a plurality of pairs of the cardiac cycle length metrics, each of the pairs of cardiac cycle length metrics separated by an integer ā€˜nā€™ of the cardiac cycle length metrics, and construct a distribution of the pairs of cardiac cycle length metrics based on values of the cardiac cycle length metrics for each of the pairs. The processing circuitry may detect a sleep apnea episode of the patient based on one or more characteristics of the constructed distribution, and control communication circuitry of the IMD system to transmit an indication of the detected sleep apnea episode to the external computing device.
    Type: Application
    Filed: August 4, 2020
    Publication date: November 19, 2020
    Inventors: Yong K. Cho, Shantanu Sarkar, Eduardo N. Warman
  • Patent number: 10765359
    Abstract: Sensing circuitry of an implantable medical device (IMD) system may sense a cardiac signal that varies according to a cardiac cycle of a patient. Processing circuitry of the IMD system may determine a series of consecutive cardiac cycle length metric values based on the sensed cardiac signal, identify a plurality of pairs of the cardiac cycle length metrics, each of the pairs of cardiac cycle length metrics separated by an integer ā€˜nā€™ of the cardiac cycle length metrics, and construct a distribution of the pairs of cardiac cycle length metrics based on values of the cardiac cycle length metrics for each of the pairs. The processing circuitry may detect a sleep apnea episode of the patient based on one or more characteristics of the constructed distribution, and control communication circuitry of the IMD system to transmit an indication of the detected sleep apnea episode to the external computing device.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: September 8, 2020
    Assignee: Medtronic, Inc.
    Inventors: Yong K. Cho, Shantanu Sarkar, Eduardo N. Warman
  • Patent number: 10758733
    Abstract: An implantable medical device has a housing having a proximal end, a distal end and an outer sidewall extending from the proximal end to the distal end. A fixation sheath includes a housing sheath portion extending along the outer sidewall of the housing, and a fixation member portion extending from the housing sheath portion. The housing sheath portion is advanceable from a first position along the outer sidewall of the housing in which the fixation member portion is retracted toward the proximal end of the housing to a second position along the outer sidewall of the housing in which the fixation member portion is deployed to extend away from the housing distal end for anchoring the implantable medical device at an implant site.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: September 1, 2020
    Assignee: Medtronic, Inc.
    Inventors: Zhongping Yang, Thomas A. Anderson, Yong K. Cho, Becky L. Dolan, Rick D. Mcvenes
  • Patent number: 10751542
    Abstract: Techniques for minimizing rate of depletion of a non-rechargeable power source, to extend the operational lifetime of an implantable medical device that includes the non-rechargeable power source, by enforcing operational-mode-specific communication protocols whereby inter-device communication between the implantable medical device and another implantable medical device is such that level of power draw from the non-rechargeable power source by the implantable medical device is less than level of power draw from the rechargeable power source by the another implantable medical device for the implantable medical devices to engage in communication with each other.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: August 25, 2020
    Assignee: Medtronic, Inc.
    Inventors: Wade M. Demmer, Yong K. Cho, Michael F. Hess, Todd J. Sheldon
  • Publication number: 20200196948
    Abstract: Systems and methods include differential diagnosis for acute heart failure to provide treatment to a patient including determining whether the patient has cardiac volume overload, determining whether the patient has decreased abdominal venous system volume, and providing the appropriate treatment in response to the determinations. A multi-sensor system may be used to determine cardiac volume and abdominal venous system volume. Fluid redistribution treatment may be provided when cardiac volume overload is accompanied by a decrease in abdominal venous system volume. Fluid accumulation treatment may be provided when cardiac volume overload is not accompanied by a decrease in abdominal venous system volume.
    Type: Application
    Filed: December 20, 2019
    Publication date: June 25, 2020
    Inventors: Yong K. Cho, Tom D. Bennett, Douglas A. Hettrick, Charles P. Sperling, Paul A. Sobotka, Vinod Sharma, Eduardo N. Warman, Todd M. Zielinski
  • Publication number: 20200187865
    Abstract: Provided is a method, system and/or apparatus for determining prospective heart failure event risk. Acquired from a device memory are a heart failure patient's current and preceding risk assessment periods. Counting detected data observations in the current risk assessment period for a current risk assessment total amount and counting detected data observations in the preceding risk assessment period for a preceding risk assessment period total amount. Associating the current risk assessment and preceding risk assessment total amounts with a lookup table to acquire prospective risk of heart failure (HF) event for the preceding risk assessment period and the current risk assessment period. Employing weighted sums of the prospective risk of the HF event for the preceding risk assessment period and the current risk assessment period to calculate a weighted prospective risk of the HF event for a patient. Displaying on a graphical user interface the weighted prospective risk of the HF event for the patient.
    Type: Application
    Filed: December 10, 2019
    Publication date: June 18, 2020
    Inventors: Vinod Sharma, Eduardo N. Warman, Yong K. Cho, Shantanu Sarkar
  • Publication number: 20200121932
    Abstract: An intracardiac ventricular pacemaker is configured to detect a ventricular diastolic event from a motion signal received by a pacemaker control circuit from a motion sensor. The control circuit starts an atrial refractory period having an expiration time set based on a time of the detection of the ventricular diastolic event. The control circuit detects an atrial systolic event from the motion signal after expiration of the atrial refractory period and controls a pulse generator of the pacemaker to deliver a pacing pulse to a ventricle of a patient's heart at a first atrioventricular pacing time interval after the atrial systolic event detection.
    Type: Application
    Filed: December 19, 2019
    Publication date: April 23, 2020
    Inventors: Vincent E. SPLETT, Todd J. SHELDON, Yong K. CHO, Wade M. DEMMER, Mark K. ERICKSON
  • Publication number: 20200046983
    Abstract: An intracardiac ventricular pacemaker having a motion sensor is configured to produce a motion signal including an atrial systolic event and a ventricular diastolic event indicating a passive ventricular filling phase, set a detection threshold to a first amplitude during an expected time interval of the ventricular diastolic event and to a second amplitude lower than the first amplitude after an expected time interval of the ventricular diastolic event. The pacemaker is configured to detect the atrial systolic event in response to the motion signal crossing the detection threshold and set an atrioventricular pacing interval in response to detecting the atrial systolic event.
    Type: Application
    Filed: October 16, 2019
    Publication date: February 13, 2020
    Inventors: Vincent E. SPLETT, Todd J. SHELDON, Yong K. CHO, Wade M. DEMMER, Mark K. ERICKSON
  • Patent number: RE48197
    Abstract: A leadless pacing device (LPD) includes a motion sensor configured to generate a motion signal as a function of heart movement. The LPD is configured to analyze the motion signal within an atrial contraction detection window that begins an atrial contraction detection delay period after activation of the ventricle, and detect a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window. If the LPD does not detect a ventricular depolarization subsequent to the atrial contraction, e.g., with an atrio-ventricular (AV) interval beginning when the atrial contraction was detected, the LPD delivers a ventricular pacing pulse.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: September 8, 2020
    Assignee: Medtronic, Inc.
    Inventors: Yong K. Cho, Aleksandre T. Sambelashvili, Todd J. Sheldon