Patents by Inventor Yong K. Cho

Yong K. Cho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180085588
    Abstract: An intracardiac ventricular pacemaker having a motion sensor is configured to produce a motion signal including an atrial systolic event and a ventricular diastolic event indicating a passive ventricular filling phase, set a detection threshold to a first amplitude during an expected time interval of the ventricular diastolic event and to a second amplitude lower than the first amplitude after an expected time interval of the ventricular diastolic event. The pacemaker is configured to detect the atrial systolic event in response to the motion signal crossing the detection threshold and set an atrioventricular pacing interval in response to detecting the atrial systolic event.
    Type: Application
    Filed: September 29, 2016
    Publication date: March 29, 2018
    Inventors: Vincent E Splett, Todd J Sheldon, Yong K Cho, Wade M Demmer, Mark K Erickson
  • Publication number: 20180085589
    Abstract: An intracardiac ventricular pacemaker is configured to detect a ventricular diastolic event from a motion signal received by a pacemaker control circuit from a motion sensor. The control circuit starts an atrial refractory period having an expiration time set based on a time of the detection of the ventricular diastolic event. The control circuit detects an atrial systolic event from the motion signal after expiration of the atrial refractory period and controls a pulse generator of the pacemaker to deliver a pacing pulse to a ventricle of a patient's heart at a first atrioventricular pacing time interval after the atrial systolic event detection.
    Type: Application
    Filed: September 29, 2016
    Publication date: March 29, 2018
    Inventors: Vincent E. Splett, Todd J. Sheldon, Yong K. Cho, Wade M. Demmer, Mark K. Erickson
  • Publication number: 20180055386
    Abstract: The exemplary systems and methods may monitor one or more signals to be used to assess the hemodynamic status of a patient. The one or more signals may be used to calculate, or determine, a plurality of pulse transit times. The plurality of pulse transit times may be used to determine hemodynamic status values that may be indicative of a patient's aggregate hemodynamic status.
    Type: Application
    Filed: August 31, 2016
    Publication date: March 1, 2018
    Inventors: Todd M. Zielinski, David A. Anderson, Tom D. Bennett, James K. Carney, Can Cinbis, Yong K. Cho, Jonathan L. Kuhn, Brian B. Lee, Richard J. O'Brien, Eduardo N. Warman, Vinod Sharma
  • Patent number: 9861817
    Abstract: Medical devices and methods for providing breathing therapy (e.g., for treating heart failure, hypertension, etc.) may determine at least the inspiration phase of one or more breathing cycles based on the monitored physiological parameters and control delivery of a plurality of breathing therapy sessions (e.g., each of the breathing therapy sessions may be provided during a defined time period). Further, each of the plurality of breathing therapy sessions may include delivering stimulation after the start of the inspiration phase of each of a plurality of breathing cycles to prolong diaphragm contraction during the breathing cycle.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: January 9, 2018
    Assignee: Medtronic, Inc.
    Inventors: Yong K Cho, Shaileshkumar V Musley, Avram Scheiner
  • Patent number: 9724018
    Abstract: Systems and methods for monitoring phrenic nerve function of a patient are disclosed, including, including establishing a diaphragmatic movement value threshold; positioning a diaphragmatic movement sensor on an external surface of an abdomen of the patient; applying a treatment regimen to a tissue region in proximity to the phrenic nerve; measuring a diaphragmatic movement value with the diaphragmatic movement sensor; comparing the measured diaphragmatic movement value to the established diaphragmatic movement value threshold; and generating an alert in response to the comparison.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: August 8, 2017
    Assignee: Medtronic CryoCath LP
    Inventors: Yong K. Cho, Scott A. Ransom, Xusheng Zhang
  • Publication number: 20170112390
    Abstract: A medical device system and method for monitoring a cardiovascular pressure signal to identify an atrial arrhythmia that includes a sensor sensing a cardiovascular pressure signal and a pressure analysis module that is configured to determine at least one of an interval dispersion and an amplitude dispersion of the sensed pressure signal, compare the at least one of an interval dispersion and an amplitude dispersion of the sensed pressure signal to a dispersion threshold, and determine whether the atrial arrhythmia is occurring in response to the comparing
    Type: Application
    Filed: October 22, 2015
    Publication date: April 27, 2017
    Inventors: Yong K. Cho, Michael R.S. Hill
  • Publication number: 20170105635
    Abstract: An implantable medical device includes a housing having a proximal end and a distal end, a control module enclosed by the housing, and a pressure sensor electrically coupled to the control module. A fixation member is coupled to the housing distal end for anchoring the housing distal end at a fixation site within a cardiovascular system of a patient, and the pressure sensor is spaced apart proximally from the fixation member.
    Type: Application
    Filed: November 6, 2015
    Publication date: April 20, 2017
    Inventors: Yong K. Cho, Michael F. Hess, Leonardo Rapallini, Todd J. Sheldon, Brian D. Urke
  • Patent number: 9597511
    Abstract: An implantable medical device and associated method to determine an optimal control parameter setting for controlling a cardiac therapy that includes a therapy delivery module to deliver cardiac pacing signals at a plurality of pacing rates, and an admittance measurement module to determine admittance signals associated with each of the plurality of pacing rates. A control unit determines metrics of hemodynamic performance corresponding to each of the plurality of pacing rates in response to the determined admittance signals, identifies pacing rates of the plurality of pacing rates as rejected rates in response to the determined metrics of hemodynamic performance, and determines a pacing rate of the plurality of pacing rates as an optimal rate for delivering the cardiac therapy in response to the identified pacing rates.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: March 21, 2017
    Assignee: Medtronic, Inc.
    Inventors: Yong K. Cho, Douglas A. Hettrick, Todd M. Zielinski
  • Publication number: 20160220825
    Abstract: Various techniques for measuring cardiac cycle length and pressure metrics based on pulmonary artery pressures are described. One example method described includes identifying a point within a derivative signal of a cardiovascular pressure signal without reference to electrical activity of a heart, initiating a time window from the identified point in the derivative signal, identifying a point within the cardiovascular signal within the time window, and determining at least one of a systolic pressure or diastolic pressure based on the identified point.
    Type: Application
    Filed: January 25, 2016
    Publication date: August 4, 2016
    Inventors: Saul E. Greenhut, Robert T. Taepke, David R. Bloem, Yong K. Cho, Donna M. Salmi
  • Patent number: 9399140
    Abstract: A leadless pacing device (LPD) includes a motion sensor configured to generate a motion signal as a function of heart movement. The LPD is configured to analyze the motion signal within an atrial contraction detection window that begins an atrial contraction detection delay period after activation of the ventricle, and detect a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window. If the LPD does not detect a ventricular depolarization subsequent to the atrial contraction, e.g., with an atrio-ventricular (AV) interval beginning when the atrial contraction was detected, the LPD delivers a ventricular pacing pulse.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: July 26, 2016
    Assignee: Medtronic, Inc.
    Inventors: Yong K. Cho, Aleksandre T. Sambelashvili, Todd J. Sheldon
  • Publication number: 20160206250
    Abstract: Provided is a method, system and/or apparatus for determining prospective heart failure event risk. Acquired from a device memory are a heart failure patient's current and preceding risk assessment periods. Counting detected data observations in the current risk assessment period for a current risk assessment total amount and counting detected data observations in the preceding risk assessment period for a preceding risk assessment period total amount. Associating the current risk assessment and preceding risk assessment total amounts with a lookup table to acquire prospective risk of heart failure (HF) event for the preceding risk assessment period and the current risk assessment period. Employing weighted sums of the prospective risk of the HF event for the preceding risk assessment period and the current risk assessment period to calculate a weighted prospective risk of the HF event for a patient. Displaying on a graphical user interface the weighted prospective risk of the HF event for the patient.
    Type: Application
    Filed: December 9, 2015
    Publication date: July 21, 2016
    Inventors: Vinod Sharma, Eduardo N. Warman, Yong K. Cho, Shantanu Sarkar
  • Publication number: 20160166831
    Abstract: Medical devices and methods for providing breathing therapy (e.g., for treating heart failure, hypertension, etc.) may determine at least the inspiration phase of one or more breathing cycles based on the monitored physiological parameters and control delivery of a plurality of breathing therapy sessions (e.g., each of the breathing therapy sessions may be provided during a defined time period). Further, each of the plurality of breathing therapy sessions may include delivering stimulation after the start of the inspiration phase of each of a plurality of breathing cycles to prolong diaphragm contraction during the breathing cycle.
    Type: Application
    Filed: August 8, 2013
    Publication date: June 16, 2016
    Inventors: Yong K. Cho, Shaileshkumar V. Musley, Avram Scheiner
  • Patent number: 9289612
    Abstract: An implantable medical system is configured to coordinate ventricular pacing with intrinsic depolarizations of another chamber. The implantable medical system includes a leadless pacing device implanted on or within the ventricle. Another implantable medical device is configured to sense an intrinsic depolarization the other chamber of the heart of the patient, and in response to the intrinsic depolarization of the other chamber, deliver an electrical pulse. The leadless pacing device is configured to detect the electrical pulse delivered by the other implantable medical device and, in response to detecting the electrical pulse delivered by the other implantable medical device, deliver a pacing pulse to the ventricle via at least a first electrode in coordination with the intrinsic depolarization of the other chamber.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: March 22, 2016
    Assignee: Medtronic Inc.
    Inventors: Aleksandre T Sambelashvili, Yong K Cho, Todd J Sheldon
  • Patent number: 9254091
    Abstract: Various techniques for measuring cardiac cycle length and pressure metrics based on pulmonary artery pressures are described. One example method described includes identifying a point within a derivative signal of a cardiovascular pressure signal without reference to electrical activity of a heart, initiating a time window from the identified point in the derivative signal, identifying a point within the cardiovascular signal within the time window, and determining at least one of a systolic pressure or diastolic pressure based on the identified point.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: February 9, 2016
    Assignee: Medtronic, Inc.
    Inventors: Saul E. Greenhut, Robert T. Taepke, David R. Bloem, Yong K. Cho, Donna M. Salmi
  • Publication number: 20160023000
    Abstract: A leadless pacing device (LPD) includes a motion sensor configured to generate a motion signal as a function of heart movement. The LPD is configured to analyze the motion signal within an atrial contraction detection window that begins an atrial contraction detection delay period after activation of the ventricle, and detect a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window. If the LPD does not detect a ventricular depolarization subsequent to the atrial contraction, e.g., with an atrio-ventricular (AV) interval beginning when the atrial contraction was detected, the LPD delivers a ventricular pacing pulse.
    Type: Application
    Filed: December 22, 2014
    Publication date: January 28, 2016
    Inventors: Yong K. CHO, Aleksandre T. SAMBELASHVILI, Todd J. SHELDON
  • Patent number: 9241640
    Abstract: Various techniques for measuring cardiac cycle length and pressure metrics based on pulmonary artery pressures are described. One example method described includes identifying a point within a derivative signal of a cardiovascular pressure signal without reference to electrical activity of a heart, initiating a time window from the identified point in the derivative signal, identifying a point within the cardiovascular signal within the time window, and determining at least one of a systolic pressure or diastolic pressure based on the identified point.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: January 26, 2016
    Assignee: Medtronic, Inc.
    Inventors: Saul E. Greenhut, Robert T. Taepke, David R. Bloem, Yong K. Cho, Donna M. Salmi
  • Publication number: 20160015985
    Abstract: A medical device system including at least a first implantable medical device and a second implantable medical device is configured to establish by a control module of the first implantable medical device whether the second implantable medical device is present in a patient and self-configure an operating mode of the control module in response to establishing that the second implantable medical device is present.
    Type: Application
    Filed: March 11, 2015
    Publication date: January 21, 2016
    Inventors: Yong K. Cho, Wade M. Demmer, Michael D. Eggen, Kathryn Hilpisch, Michael F. Hess, Todd J. Sheldon, Saul E. Greenhut
  • Patent number: 9042982
    Abstract: Methods and devices for determining optimal Atrial to Ventricular (AV) pacing intervals and Ventricular to Ventricular (VV) delay intervals in order to optimize cardiac output. Impedance, preferably sub-threshold impedance, is measured across the heart at selected cardiac cycle times as a measure of chamber expansion or contraction. One embodiment measures impedance over a long AV interval to obtain the minimum impedance, indicative of maximum ventricular expansion, in order to set the AV interval. Another embodiment measures impedance change over a cycle and varies the AV pace interval in a binary search to converge on the AV interval causing maximum impedance change indicative of maximum ventricular output. Another method varies the right ventricle to left ventricle (VV) interval to converge on an impedance maximum indicative of minimum cardiac volume at end systole. Another embodiment varies the VV interval to maximize impedance change.
    Type: Grant
    Filed: February 20, 2012
    Date of Patent: May 26, 2015
    Assignee: Medtronic, Inc.
    Inventors: John E. Burnes, Yong K. Cho, David Igel, Luc R. Mongeon, John C. Rueter, Harry Stone, Jodi Zilinski
  • Patent number: 9011341
    Abstract: The present invention provides an apparatus for detecting and monitoring obstructive sleep apnea. The apparatus measures sinus tachycardia and a change in the atrial-ventricular conduction, and includes a controller for receiving the measurement of the sinus tachycardia and the change in the atrial-ventricular conduction to detect obstructive sleep apnea based upon the sinus tachycardia and the change in the atrial-ventricular conduction.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: April 21, 2015
    Assignee: Medtronic, Inc.
    Inventors: Donald N. Jensen, Catherine R. Condie, Yong K. Cho
  • Publication number: 20150045848
    Abstract: Medical devices and methods for providing breathing therapy (e.g., for treating heart failure, hypertension, etc.) may determine at least the inspiration phase of one or more breathing cycles based on the monitored physiological parameters and control delivery of a plurality of breathing therapy sessions (e.g., each of the breathing therapy sessions may be provided during a defined time period). Further, each of the plurality of breathing therapy sessions may include delivering stimulation after the start of the inspiration phase of each of a plurality of breathing cycles to prolong diaphragm contraction during the breathing cycle.
    Type: Application
    Filed: August 8, 2013
    Publication date: February 12, 2015
    Applicant: Medtronic, Inc.
    Inventors: Yong K. Cho, Shaileshkumar V. Musley, Avram Scheiner