Patents by Inventor Yong K. Cho

Yong K. Cho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110251496
    Abstract: Detection of volume depletion, particularly after an incidence of volume overload is disclosed. Various methods, systems, and devices are disclosed that sense and analyze a physiological parameter related to a patient's fluid level in order to warn patients of potentially dangerous volume depletion conditions while minimizing false notifications.
    Type: Application
    Filed: June 20, 2011
    Publication date: October 13, 2011
    Applicant: Medtronic, Inc.
    Inventors: Robert T. Taepke, II, Yong K. Cho, Joel R. Lauer, Tommy D. Bennett
  • Publication number: 20110208078
    Abstract: Apparatus using one or more modes of statistical analysis with one or more monitored parameters of a patient's heart to identify and/or assess arrhythmias. Through use of the one or more modes of statistical analysis, a medical professional can be aided during evaluation of patient data for diagnosis of the patient. At least one of the monitored parameters may include one or more values used representatively for storage intervals of a selected length. As such, for each storage interval, a value may be determined for the one monitored parameter occurring at an upper percentile and a lower percentile. In addition, a median value may be determined for the one monitored parameter for each storage interval. Over a plurality of the storage intervals, these determined values can be used in one or more modes of statistical analysis to better identify and assess the arrhythmias.
    Type: Application
    Filed: May 3, 2011
    Publication date: August 25, 2011
    Applicant: Medtronic, Inc.
    Inventors: Yong K. Cho, Tommy D. Bennett, Barbro M. Kjellstrom, Susan C. Vadnais
  • Publication number: 20110201952
    Abstract: A method and apparatus for sensing improvement using pressure data. The method and apparatus may be used in an implantable medical device to confirm that an EGM event signifies a true mechanical cardiac activity and not just electrical oversensing. The mechanical activity may be used to create a mechanical marker channel in the implantable medical device.
    Type: Application
    Filed: February 14, 2011
    Publication date: August 18, 2011
    Applicant: Medtronic, Inc.
    Inventors: YONG K. CHO, TERESA A. WHITMAN, MARK L. BROWN, SCOTT W. DAVIE, KAREN J. KLECKNER, CHARLES R. GORDON
  • Patent number: 7988635
    Abstract: A method of identifying sleep disordered breathing (SDB) in a patient includes monitoring a hemodynamic pressure, deriving high, middle, and low values representative of the distribution of the hemodynamic pressure over a storage interval, measuring a ratio of a lower range to a full range of the hemodynamic pressure based on the derived high, middle, and low values, and using the ratio to determine whether the patient has experienced an SDB episode. Certain embodiments of the invention compare the ratio to a threshold value to identify the occurrence of an SDB episode, while other embodiments of the invention identify the occurrence of an SDB episode by monitoring for a simultaneous increase in both the ratio and the full range of the hemodynamic pressure. In certain other embodiments of the invention, activity level and/or duration criteria may be employed to confirm the occurrence of an SDB episode detected using the ratio.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: August 2, 2011
    Assignee: Medtronic, Inc.
    Inventors: Yong K. Cho, Tommy D. Bennett, Barbro M. Kjellstrom
  • Publication number: 20110172544
    Abstract: A medical device and method for determining baroreflex sensitivity (BRS) based on one or more respiration cycles. The BRS determination may be performed continuously based on measurements of heart rate, blood pressure, and respiration cycles.
    Type: Application
    Filed: January 25, 2011
    Publication date: July 14, 2011
    Applicant: Medtronic, Inc.
    Inventors: Yong K. Cho, Tommy D. Bennett
  • Patent number: 7963922
    Abstract: Detection of volume depletion, particularly after an incidence of volume overload is disclosed. Various methods, systems, and devices are disclosed that sense and analyze a physiological parameter related to a patient's fluid level in order to warn patients of potentially dangerous volume depletion conditions while minimizing false notifications.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: June 21, 2011
    Assignee: Medtronic, Inc.
    Inventors: Robert T. Taepke, II, Yong K. Cho, Joel R. Lauer, Tommy D. Bennett
  • Publication number: 20110105858
    Abstract: An implantable medical device and associated method detect obstructed inspiration by monitoring an blood pressure signal. A respiration signal is monitored and a phase of respiratory inspiration is detected from the respiration signal. A trend in the pressure signal is measured during the inspiration phase. Obstructed inspiration for the inspiration phase is detected in response to the measured the trend.
    Type: Application
    Filed: October 30, 2009
    Publication date: May 5, 2011
    Inventors: Yong K. Cho, Mark K. Erickson, Todd M. Zielinski
  • Patent number: 7937137
    Abstract: Apparatus using one or more modes of statistical analysis with one or more monitored parameters of a patient's heart to identify and/or assess arrhythmias. Through use of the one or more modes of statistical analysis, a medical professional can be aided during evaluation of patient data for diagnosis of the patient. At least one of the monitored parameters may include one or more values used representatively for storage intervals of a selected length. As such, for each storage interval, a value may be determined for the one monitored parameter occurring at an upper percentile and a lower percentile. In addition, a median value may be determined for the one monitored parameter for each storage interval. Over a plurality of the storage intervals, these determined values can be used in one or more modes of statistical analysis to better identify and assess the arrhythmias.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: May 3, 2011
    Assignee: Medtronic, Inc.
    Inventors: Yong K. Cho, Tommy D. Bennett, Barbro M. Kjellstrom, Susan C. Vadneis
  • Publication number: 20110077616
    Abstract: An implantable medical device system and associated method for use in guiding an acute decompensated heart failure therapy set an optimal fluid status measurement level. A physiological sensor signal sensed by an implantable medical device is used to compute the fluid status measurement. A target rate of change of the fluid status measurement is computed for guiding the therapy.
    Type: Application
    Filed: September 30, 2009
    Publication date: March 31, 2011
    Applicant: Medtronic, Inc.
    Inventors: Tommy D. Bennett, Yong K. Cho
  • Patent number: 7890162
    Abstract: Method and apparatus for sensing improvement using pressure data. The method and apparatus may be used in an implantable medical device to confirm that an EGM event signifies a true mechanical cardiac activity and not just electrical oversensing. The mechanical activity may be used to create a mechanical marker channel in the implantable medical device.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: February 15, 2011
    Assignee: Medtronic, Inc.
    Inventors: Yong K. Cho, Teresa A. Whitman, Mark L. Brown, Scott W. Davie, Karen J. Kleckner, Charles R. Gordon
  • Patent number: 7874992
    Abstract: A medical device and method for determining baroreflex sensitivity (BRS) based on one or more respiration cycles. The BRS determination may be performed continuously based on measurements of heart rate, blood pressure, and respiration cycles.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: January 25, 2011
    Assignee: Medtronic, Inc.
    Inventors: Yong K. Cho, Tommy D. Bennett
  • Patent number: 7873410
    Abstract: The cardiac rhythm management system includes an implantable medical device (IMD) with leads carrying electrodes for sensing cardiac electrical activity, and a physiologic sensor for sensing cardiac mechanical activity. The IMD measures electromechanical delays between electrical activity sensed by the electrodes and mechanical activity sensed by the physiologic sensor. The measured electromechanical delays can be used to detect lead dislodgement and to assess dyssynchrony between two areas of the heart, such as the right ventricle and the left ventricle.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: January 18, 2011
    Assignee: Medtronic, Inc.
    Inventors: Yong K. Cho, Beth J. Geiman-Ferri, Tommy D. Bennett
  • Publication number: 20100317940
    Abstract: A medical device for monitoring a patient condition includes a sensor capable of being advanced transvascularly to be positioned along a volume of tissue, the sensor including a first combination of a light source and a light detector to emit light into a volume of tissue and to detect light scattered by the volume of tissue and to generate a first output signal corresponding to an intensity of the detected light. A control module is coupled to the light source to control the light source to emit light at least four spaced-apart light wavelengths, and a monitoring module is coupled to the light detector to receive the output signal and compute a measure of tissue oxygenation using the light detector output signal.
    Type: Application
    Filed: June 10, 2010
    Publication date: December 16, 2010
    Inventors: Jonathan L. Kuhn, David A. Anderson, Can Cinbis, Richard J. O'Brien, Yong K. Cho, Thomas J. Mullen, Avram Scheiner, Rodolphe P. Katra
  • Publication number: 20100317941
    Abstract: A medical device for monitoring a patient condition includes a first combination of a light source and a light detector to emit light into a volume of tissue, detect light scattered by the volume of tissue, and provide a first output signal corresponding to an intensity of the detected light. A control module is coupled to the light source to control the light source to emit light at least four spaced-apart light wavelengths, and a monitoring module is coupled to the light detector to receive the output signal, compute a measure of tissue oxygenation in response to the light detector output signal, and detect tissue hypoxia using the measure of tissue oxygenation.
    Type: Application
    Filed: June 10, 2010
    Publication date: December 16, 2010
    Inventors: Jonathan L. Kuhn, David A. Anderson, Can Cinbis, Richard J. O'Brien, Yong K. Cho, Thomas J. Mullen, Avram Scheiner, Rodolphe P. Katra
  • Publication number: 20100217135
    Abstract: Systems and methods for improving hemodynamic data interpretation by accounting for the effects of patient posture is disclosed. In certain embodiments, a posture signal is acquired and used to categorize hemodynamic data according to posture to facilitate distinguishing posture-related changes in acquired hemodynamic data from those due to pathophysiologic changes. Posture information may be used to normalize data acquired in various postures to facilitate interpretation of such data. Baseline measurements of hemodynamic data acquired in various postures may also be used to subsequently detect changes in patient posture without the need for an implanted posture sensor.
    Type: Application
    Filed: March 1, 2010
    Publication date: August 26, 2010
    Applicant: Medtronic, Inc.
    Inventors: Yong K. Cho, Yongduk Cho, Tommy D. Bennett, Mustafa Karamanoglu
  • Publication number: 20100113890
    Abstract: An implantable medical device system and method provide physiological variable monitoring for use in patient management. A target value for a physiological variable and formulations for computing metrics of the physiological variable are stored. Values of the physiological variable are determined from a sensed physiological signal and are used to compute a selected metric. The metric is compared to the stored target value.
    Type: Application
    Filed: October 31, 2008
    Publication date: May 6, 2010
    Inventors: Yong K. Cho, Ven R. Manda, Brandon S. Sparks, Tommy D. Bennett
  • Publication number: 20100113888
    Abstract: Heart failure decompensation is detected by sensing at least one physiological signal. Values of at least two different heart failure variables are derived using one or more physiological signals and a threshold for the first heart failure variable is adjusted in response to the value of the second heart failure variable. The value of the first heart failure variable is compared to first threshold for detecting a heart failure condition.
    Type: Application
    Filed: October 30, 2008
    Publication date: May 6, 2010
    Inventors: Yong K. Cho, Shantanu Sarkar, Douglas A. Hettrick, Robert T. Taepke, II, Tommy D. Bennett
  • Patent number: 7711423
    Abstract: Impedance, e.g. sub-threshold impedance, is measured across the heart at selected cardiac cycle times as a measure of chamber expansion or contraction. One embodiment measures impedance over a long AV interval to obtain the minimum impedance, indicative of maximum ventricular expansion, in order to set the AV interval. Another embodiment measures impedance change over a cycle and varies the AV pace interval in a binary search to converge on the AV interval causing maximum impedance change indicative of maximum ventricular output. Another method varies the right ventricle to left ventricle (VV) interval to converge on an impedance maximum indicative of minimum cardiac volume at end systole. Another embodiment varies the VV interval to maximize impedance change. Other methods vary the AA interval to maximize impedance change over the entire cardiac cycle or during the atrial cycle.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: May 4, 2010
    Assignee: Medtronic, Inc.
    Inventors: John E. Burnes, David A. Igel, John C. Rueter, Yong K. Cho, Luc R. Mongeon, Harold E. Stone, Jodi Zilinski
  • Publication number: 20100076324
    Abstract: A medical device for determining a respiratory effort having a pressure sensor to sense pressure signals, a housing having system components positioned therein, and a microprocessor positioned within the housing, wherein the microprocessor detects an inspiration and an expiration in response to the pressure signals, detects a breath in response to the detected inspiration and the detected expiration, and determines the respiratory effort in response to the detected breath.
    Type: Application
    Filed: October 31, 2008
    Publication date: March 25, 2010
    Inventors: Yong K. Cho, Tommy D. Bennett, Mark K. Erickson, Maneesh Shrivastav, Saul E. Greenhut, Karen J. Kleckner, Charles P. Sperling, Robert A. Corey
  • Publication number: 20100076325
    Abstract: A method of determining respiratory effort in a medical device in which pressure signals are sensed to generate corresponding sample points, an inspiration and an expiration are detected in response to the sensed pressure signals, a breath is detected in response to the detected inspiration and the detected expiration, and the respiratory effort is determined in response to the detected breath.
    Type: Application
    Filed: October 31, 2008
    Publication date: March 25, 2010
    Inventors: Yong K. Cho, Tommy D. Bennett, Mark K. Erickson, Maneesh Shrivastav, Saul E. Greenhut, Karen J. Kleckner, Charles P. Sperling, Robert A. Corey