Patents by Inventor Yonghong Tao

Yonghong Tao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10976340
    Abstract: An electronic measuring device for measuring a physical parameter includes a differential analogue sensor formed from two capacitances—an excitation circuit of the differential analogue sensor providing to the sensor two electrical excitation signals which are inverted—a measuring circuit which generates an analogue electrical voltage which is a function determined from the value of the sensor, and a circuit for compensating for a possible offset of the sensor, which is formed from a compensation capacitance, which is excited by its own electrical excitation signal. The excitation circuit is arranged in order to be able to provide to an additional capacitance of the compensation circuit its own electrical excitation signal having a linear dependence on the absolute temperature with a determined proportionality factor in order to compensate for a drift in temperature of an electrical assembly of the measuring device comprising at least the compensation capacitance.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: April 13, 2021
    Assignee: EM Microelectronic-Marin SA
    Inventors: Sylvain Grosjean, Yonghong Tao, Alexandre Deschildre, Hugues Blangy
  • Publication number: 20200363368
    Abstract: A sensor interface circuit (5) for an amperometric electrochemical sensor (3). The circuit includes: a current-to-voltage converter (9, Rf) connected to a first terminal (WRK) of the sensor (3) for converting an electric current through the sensor (3) to a voltage at an output terminal (10) of the current-to-voltage converter (9, Rf); a first amplifier (7) connected between a second terminal (REF) and a third terminal (CNTR) of the sensor (3) for maintaining a substantially fixed voltage difference between the first and second terminals (WRK, REF) of the sensor (3); a power supply (11) for powering the voltage converter (9, Rf) and for powering a first portion (31) of the first amplifier (7); and a negative voltage converter (17) configured to power a second portion of the first amplifier (7) through its low-side supply terminal (41), while a high-side supply terminal (39) of the second portion of the first amplifier (7) is configured to be connected to the power supply (11).
    Type: Application
    Filed: April 27, 2020
    Publication date: November 19, 2020
    Applicant: EM MICROELECTRONIC-MARIN SA
    Inventor: Yonghong TAO
  • Publication number: 20200249096
    Abstract: A temperature sensor arrangement (10), including a bandgap voltage generator (12), which is configured to provide an output voltage (Vbg); at least one semiconductor junction (14) for temperature sensing, which is biased by a biasing current flowing through said semiconductor junction (14); and at least one poly-resistor (Rb3) which is connected between the output (23) of the bandgap voltage generator (12) and the semiconductor junction (14), thereby providing said biasing current from the bandgap voltage generator (12) to the semiconductor junction (14).
    Type: Application
    Filed: December 17, 2019
    Publication date: August 6, 2020
    Applicant: EM MICROELECTRONIC MARIN S.A.
    Inventors: Yonghong TAO, Pinchas Novac, Sylvain Grosjean, Alexandre Deschildre, Hugues Blangy
  • Patent number: 10725066
    Abstract: The present invention relates to an interface circuit for a capacitive accelerometer sensor for measuring an acceleration value sensed by the sensor. The interface circuit comprises a plurality of electrical switches and three programmable capacitors. Two of the programmable capacitors are arranged to implement gain trimming of the interface circuit, while one of the programmable capacitors is arranged to implement acceleration range selection.
    Type: Grant
    Filed: June 6, 2018
    Date of Patent: July 28, 2020
    Assignee: EM Microeletronic-Marin SA
    Inventors: Yonghong Tao, Sylvain Grosjean, Jean-Michel Daga
  • Patent number: 10564176
    Abstract: A capacitive accelerometer for measuring an acceleration value is provided, including a first and a second electrode; a third mobile electrode arranged therebetween, and forming with the first electrode a first capacitor, and with the second electrode a second capacitor, the third electrode being displaced when the accelerometer is subject to acceleration and generates a capacitance difference value transformable to electrical charges; a first and a second voltage source configured to selectively apply first and second voltages to the first and the second electrodes, respectively, and a third voltage to the third electrode, and to generate electrostatic forces acting on the third electrode, the first, second and/or third voltages applied during electrical charge transfers for collecting the electrical charges to measure the acceleration; and an electrostatic force compensator to compensate for missing electrostatic forces due to a modified charge transfer rate, a compensation amount dependent on the modified
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: February 18, 2020
    Assignee: EM Microelectronic-Marin SA
    Inventors: Sylvain Grosjean, Yonghong Tao, Jean-Michel Daga
  • Publication number: 20190178909
    Abstract: An electronic measuring device for measuring a physical parameter includes a differential analogue sensor formed from two capacitances—an excitation circuit of the differential analogue sensor providing to the sensor two electrical excitation signals which are inverted—a measuring circuit which generates an analogue electrical voltage which is a function determined from the value of the sensor, and a circuit for compensating for a possible offset of the sensor, which is formed from a compensation capacitance, which is excited by its own electrical excitation signal. The excitation circuit is arranged in order to be able to provide to an additional capacitance of the compensation circuit its own electrical excitation signal having a linear dependence on the absolute temperature with a determined proportionality factor in order to compensate for a drift in temperature of an electrical assembly of the measuring device comprising at least the compensation capacitance.
    Type: Application
    Filed: December 5, 2018
    Publication date: June 13, 2019
    Applicant: EM Microelectronic-Marin SA
    Inventors: Sylvain Grosjean, Yonghong Tao, Alexandre Deschildre, Hugues Blangy
  • Publication number: 20180364275
    Abstract: The present invention relates to an interface circuit for a capacitive accelerometer sensor for measuring an acceleration value sensed by the sensor. The interface circuit comprises a plurality of electrical switches and three programmable capacitors. Two of the programmable capacitors are arranged to implement gain trimming of the interface circuit, while one of the programmable capacitors is arranged to implement acceleration range selection.
    Type: Application
    Filed: June 6, 2018
    Publication date: December 20, 2018
    Applicant: EM Microelectronic-Marin SA
    Inventors: Yonghong Tao, Sylvain Grosjean, Jean-Michel Daga
  • Publication number: 20180143219
    Abstract: The present invention concerns a capacitive accelerometer for measuring an acceleration value. The accelerometer comprises: a first electrode; a second electrode; a third, mobile electrode arranged between the first and second electrodes, and forming with the first electrode a first capacitor with a first capacitance value, and with the second electrode a second capacitor with a second capacitance value, the third electrode being arranged to be displaced when the capacitive accelerometer is subject to acceleration thereby arranged to generate a capacitance difference value between the first and second capacitances transformable to electrical charges; a first voltage source and a second voltage source for selectively applying a first voltage value to the first electrode, a second voltage value to the second electrode and a third voltage value to the third electrode, and arranged to generate electrostatic forces acting on the third electrode.
    Type: Application
    Filed: November 7, 2017
    Publication date: May 24, 2018
    Applicant: EM Microelectronic-Marin SA
    Inventors: Sylvain GROSJEAN, Yonghong TAO, Jean-Michel DAGA
  • Publication number: 20130169340
    Abstract: A technique includes charging and discharging a capacitive sensor of a display. The technique includes regulating currents that are associated with the charging and discharging based at least in part on a reference time interval and determining a capacitance sensed by the capacitive sensor based at least in part on the regulating.
    Type: Application
    Filed: December 30, 2011
    Publication date: July 4, 2013
    Inventors: Yonghong Tao, Daniel J. Cooley, Jeffrey L. Sonntag, Hong Lee Koo
  • Publication number: 20120054379
    Abstract: An integrated control circuit is disclosed including a central processing unit operating in a normal full system power mode and in a reduced system low power mode, and a memory. A plurality of peripheral units are provided, at least one of which includes an input/output for interfacing with at least an external system for receiving information therefrom and a process block. The process block processes the received information from the external system and during the processing of the received information, data is stored in the at least one peripheral unit, and data is transferred at least to or at least from the memory. The input/output and process blocks are fully operable in the full system power mode and the reduced system power mode. A direct memory access (DMA) transfers data directly between the at least one peripheral and the memory when such data transfer is required by the peripheral.
    Type: Application
    Filed: August 30, 2010
    Publication date: March 1, 2012
    Inventors: Kafai Leung, Brent Wilson, Yonghong Tao, Shan Wang, Shantonu Bhadury, Suby Pellissery, Raghavendra Pai Kateel, David Welland, David Andreas, Gabriel Vogel
  • Publication number: 20110157070
    Abstract: A system and method for configuring capacitive sensing speed are provided. In one example, a circuit includes first and second circuitry and control logic. The first circuitry controls a first current provided to a reference capacitor having a known capacitance. The second circuitry controls a second current to an external capacitor having an unknown capacitance. The control logic is configured to receive input defining a period of time at which to set the charge time of the reference capacitor, control the first circuitry to provide a minimum amount of the first current needed to charge the reference capacitor within the defined period of time, and control the second circuitry to provide an amount of the second current needed to normalize the charge time of the external capacitor with the charge time of the reference capacitor.
    Type: Application
    Filed: December 31, 2009
    Publication date: June 30, 2011
    Applicant: SILICON LABORATORIES INC.
    Inventors: BRADLEY MARTIN, YONGHONG TAO
  • Patent number: 7536570
    Abstract: A microcontroller unit having a suspend mode of operation includes a processing circuit for receiving digital information and processing said received digital information. Timing circuitry generates timing signals to the processing circuit responsive to signals received from a clock circuit which generates both an internal clock signal and an external clock signal. Circuitry for controlling the selective application of a synchronized enable signal and the external clock signal to the timing circuitry. The circuitry applies the internal clock signal to the timing circuitry in at least an active mode of operation of the microcontroller unit responsive to at least one first control signal and applies the external clock signal to the timing circuitry in at least a suspend mode of operation of the microcontroller unit responsive to at least one suspend control signal.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: May 19, 2009
    Assignee: Silicon Laboratories Inc.
    Inventors: Kafai Leung, Yonghong Tao
  • Publication number: 20080080648
    Abstract: A microcontroller unit having a suspend mode of operation includes a processing circuit for receiving digital information and processing said received digital information. Timing circuitry generates timing signals to the processing circuit responsive to signals received from a clock circuit which generates both an internal clock signal and an external clock signal. Circuitry for controlling the selective application of a synchronized enable signal and the external clock signal to the timing circuitry. The circuitry applies the internal clock signal to the timing circuitry in at least an active mode of operation of the microcontroller unit responsive to at least one first control signal and applies the external clock signal to the timing circuitry in at least a suspend mode of operation of the microcontroller unit responsive to at least one suspend control signal.
    Type: Application
    Filed: March 30, 2007
    Publication date: April 3, 2008
    Applicant: SILICON LABORATORIES INC.
    Inventors: KAFAI LEUNG, YONGHONG TAO