Patents by Inventor Yonghua Zhao

Yonghua Zhao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060114411
    Abstract: An eye examination instrument is presented that can perform multiple eye tests. The instrument includes an illumination optical path and an imaging optical path, wherein a focus element in the illumination optical path is mechanically coupled to a focus element in the imaging optical path. In some embodiments, the eye examination instrument can perform a visual eye test, a fundus imaging test, and an optical coherence tomography test.
    Type: Application
    Filed: October 28, 2005
    Publication date: June 1, 2006
    Inventors: Jay Wei, Yonghua Zhao
  • Patent number: 6741359
    Abstract: One embodiment of the present invention is a scanner for a beam of scanning optical coherence tomography (“OCT”) radiation that includes: (a) a source of OCT radiation; (b) a scanner; and (c) scanning optics whose image surface has a negative field curvature.
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: May 25, 2004
    Assignee: Carl Zeiss Meditec, Inc.
    Inventors: Jay Wei, Yonghua Zhao, James P. Foley
  • Publication number: 20030218755
    Abstract: One embodiment of the present invention is a scanner for a beam of scanning optical coherence tomography (“OCT”) radiation that includes: (a) a source of OCT radiation; (b) a scanner; and (c) scanning optics whose image surface has a negative field curvature.
    Type: Application
    Filed: May 22, 2002
    Publication date: November 27, 2003
    Applicant: Carl Zeiss Ophthalmic Systems, Inc.
    Inventors: Jay Wei, Yonghua Zhao, James P. Foley
  • Patent number: 6549801
    Abstract: The invention is a fast-scanning ODT system that uses phase information derived from a Hilbert transformation to increase the sensitivity of flow velocity measurements while maintaining high spatial resolution. The significant increases in scanning speed and velocity sensitivity realized by the invention make it possible to image in vivo blood flow in human skin. The method of the invention overcomes the inherent limitations of the prior art ODT by using a phase change between sequential line scans for velocity image reconstruction. The ODT signal phase or phase shifts at each pixel can be determined from the complex function, {tilde over (&Ggr;)}ODT(t), which is determined through analytic continuation of the measured interference fringes function, &Ggr;ODT(t), by use of a Hilbert transformation, by electronic phase demodulation, by optical means, or a fast Fourier transformation. The phase change in each pixel between axial-line scans is then used to calculate the Doppler frequency shift.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: April 15, 2003
    Assignee: The Regents of the University of California
    Inventors: Zhongping Chen, Yonghua Zhao, J. Stuart Nelson, Johannes F. DeBoer