Patents by Inventor Yongjun Hu

Yongjun Hu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6953749
    Abstract: Methods of forming refractory metal suicide components are described. In accordance with one implementation, a refractory metal layer is formed over a substrate. A silicon-containing structure is formed over the refractory metal layer and a silicon diffusion restricting layer is formed over at least some of the silicon-containing structure. The substrate is subsequently annealed at a temperature which is sufficient to cause a reaction between at least some of the refractory metal layer and at least some of the silicon-containing structure to at least partially form a refractory metal silicide component. In accordance with one aspect of the invention, a silicon diffusion restricting layer is formed over or within the refractory metal layer in a step which is common with the forming of the silicon diffusion restricting layer over the silicon-containing structure.
    Type: Grant
    Filed: March 2, 2001
    Date of Patent: October 11, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Yongjun Hu, Jigish D. Trivedi
  • Publication number: 20050181599
    Abstract: Various embodiments of the invention described herein reduce contact resistance to a silicon-containing material using a first refractory metal material overlying the silicon-containing material and a second refractory metal material overlying the first refractory metal material. Each refractory metal material is a conductive material containing a refractory metal and an impurity. The first refractory metal material is a metal-rich material, containing a level of its impurity at less than a stoichiometric level. The second refractory metal material has a lower affinity for the impurities than does the first refractory metal material. The second refractory metal material can thus serve as an impurity donor during an anneal or other exposure to heat.
    Type: Application
    Filed: March 4, 2005
    Publication date: August 18, 2005
    Inventors: Ravi Iyer, Yongjun Hu, Luan Tran, Brent Gilgen
  • Publication number: 20050161721
    Abstract: Various embodiments of the invention described herein reduce contact resistance to a silicon-containing material using a first refractory metal material overlying the silicon-containing material and a second refractory metal material overlying the first refractory metal material. Each refractory metal material is a conductive material containing a refractory metal and an impurity. The first refractory metal material is a metal-rich material, containing a level of its impurity at less than a stoichiometric level. The second refractory metal material has a lower affinity for the impurities than does the first refractory metal material. The second refractory metal material can thus serve as an impurity donor during an anneal or other exposure to heat.
    Type: Application
    Filed: March 4, 2005
    Publication date: July 28, 2005
    Inventors: Ravi Iyer, Yongjun Hu, Luan Tran, Brent Gilgen
  • Publication number: 20050123464
    Abstract: A method of forming a catalyst body by forming a first layer of hemispherical grain polysilicon over a substrate, and oxidizing at least a portion of the first layer to form a second layer of silica. Additionally, forming a third layer of nitride material over the second layer, and forming a catalyst material over the nitride layer, can be performed before annealing to form a catalyst body.
    Type: Application
    Filed: March 8, 2004
    Publication date: June 9, 2005
    Inventors: Yongjun Hu, Er-Xuan Ping
  • Publication number: 20050110058
    Abstract: A method used to form a semiconductor device comprises forming a polysilicon layer, forming a conductive barrier layer on the polysilicon layer, then forming a conductive nitride layer on the conductive barrier layer. Next, a conductive amorphous layer is formed on the conductive barrier layer, and an elemental metal layer is formed on the conductive amorphous layer. Without the conductive amorphous layer the elemental metal layer would form on the conductive nitride layer as a small grained, high resistance layer, while it forms on the conductive amorphous layer as a large grained, low resistance layer. A semiconductor device which may be formed using this method is also described.
    Type: Application
    Filed: November 20, 2003
    Publication date: May 26, 2005
    Inventor: Yongjun Hu
  • Patent number: 6887774
    Abstract: Methods and apparatus for forming word line stacks comprise forming a thin nitride layer coupled between a bottom silicon layer and a conductor layer. In a further embodiment, a diffusion barrier layer is coupled between the thin nitride layer and the bottom silicon layer. The thin nitride layer is formed by annealing a silicon oxide film in a nitrogen-containing ambient.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: May 3, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Yongjun Hu, Randhir P.S. Thakur, Scott DeBoer
  • Publication number: 20050026532
    Abstract: Structures and methods to ease electron emission and limit outgassing so as to inhibit degradation to the electron beam of a field emitter device are described. In one method to ease such electron emission, a layer of low relative dielectric constant material is formed under the surface of the field emitter tip. Another method is to coat the field emitter tip with a low relative dielectric constant substance or compound to form a layer and then cover that layer with a thin layer of the material of the field emitter tip.
    Type: Application
    Filed: August 31, 2004
    Publication date: February 3, 2005
    Inventor: Yongjun Hu
  • Publication number: 20050000942
    Abstract: An etching method for use in integrated circuit fabrication includes providing a metal nitride layer on a substrate assembly, providing regions of cobalt silicide on first portions of the metal nitride layer, and providing regions of cobalt on second portions of the metal nitride layer. The regions of cobalt and the second portions of the metal nitride layer are removed with at least one solution including a mineral acid and a peroxide. The mineral acid may be selected from the group including HCl, H2SO4, H3PO4, HNO3, and dilute HF (preferably the mineral acid is HCl) and the peroxide may be hydrogen peroxide. Further, the removal of the regions of cobalt and the second portions of the metal nitride layer may include a one step process or a two step process. In the one step process, the regions of cobalt and the second portions of the metal nitride layer are removed with a single solution including the mineral acid and the peroxide.
    Type: Application
    Filed: June 29, 2004
    Publication date: January 6, 2005
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Whonchee Lee, Yongjun Hu
  • Publication number: 20040238845
    Abstract: Methods and apparatus for forming word line stacks comprise forming a thin nitride layer coupled between a bottom silicon layer and a conductor layer. In a further embodiment, a diffusion barrier layer is coupled between the thin nitride layer and the bottom silicon layer. The thin nitride layer is formed by annealing a silicon oxide film in a nitrogen-containing ambient.
    Type: Application
    Filed: June 30, 2004
    Publication date: December 2, 2004
    Applicant: Micron Technology. Inc.
    Inventors: Yongjun Hu, Randhir P.S. Thakur, Scott DeBoer
  • Patent number: 6806573
    Abstract: An alloy or composite is deposited in a recess feature of a semiconductor substrate by sputtering an alloy or composite target into a recess, to form a first layer of deposited material. The first layer of deposited material is resputtered at a low angle and low energy, to redeposit the first layer of deposited material onto the bottom of the recess as a second layer of deposited material having a different stoichiometry than that of the first deposited material. In a further embodiment, a sputtering chamber ambient is comprised of argon and nitrogen. In yet a further embodiment, the resputtering step is followed by deposition of at least one layer of material with a different stoichiometry than that of the second deposited layer, to form a “graded” stoichiometry of material deposited in the recess.
    Type: Grant
    Filed: April 5, 2001
    Date of Patent: October 19, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Yongjun Hu
  • Patent number: 6798026
    Abstract: Methods and apparatus for forming word line stacks comprise forming a thin nitride layer coupled between a bottom silicon layer and a conductor layer. In a further embodiment, a diffusion barrier layer is coupled between the thin nitride layer and the bottom silicon layer. The thin nitride layer is formed by annealing a silicon oxide film in a nitrogen-containing ambient.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: September 28, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Yongjun Hu, Randhir P. S. Thakur, Scott DeBoer
  • Publication number: 20040157429
    Abstract: A process is disclosed for manufacturing a film that is smooth and has large nitride grains of a diffusion barrier material. Under the process, a nitride of the diffusion barrier material is deposited by physical vapor deposition in an environment of nitrogen. The nitrogen content of the environment is selected at an operating level such that nitride nuclei of the diffusion barrier material are evenly distributed. A grain growth step is then conducted in the nitrogen environment to grow a film of large nitride grains of the diffusion barrier material. Also disclosed is a stack structure suitable for MOS memory circuits incorporating a lightly nitrided refractory metal silicide diffusion barrier with a covering of a nitride of a diffusion barrier material. The stack structure is formed in accordance with the diffusion barrier material nitride film manufacturing process and exhibits high thermal stability, low resistivity, long range agglomeration blocking, and high surface smoothness.
    Type: Application
    Filed: February 4, 2004
    Publication date: August 12, 2004
    Applicant: Micron Technology, Inc.
    Inventor: Yongjun Hu
  • Publication number: 20040132286
    Abstract: Methods of forming refractory metal suicide components are described. In accordance with one implementation, a refractory metal layer is formed over a substrate. A silicon-containing structure is formed over the refractory metal layer and a silicon diffusion restricting layer is formed over at least some of the silicon-containing structure. The substrate is subsequently annealed at a temperature which is sufficient to cause a reaction between at least some of the refractory metal layer and at least some of the silicon-containing structure to at least partially form a refractory metal silicide component. In accordance with one aspect of the invention, a silicon diffusion restricting layer is formed over or within the refractory metal layer in a step which is common with the forming of the silicon diffusion restricting layer over the silicon-containing structure.
    Type: Application
    Filed: March 2, 2001
    Publication date: July 8, 2004
    Inventors: Yongjun Hu, Jigish D. Trivedi
  • Patent number: 6753584
    Abstract: Antireflective structures according to the present invention comprise a metal silicon nitride composition in a layer that is superposed upon a layer to be patterned that would other wise cause destructive reflectivity during photoresist patterning. The antireflective structure has the ability to absorb light used during photoresist patterning. The antireflective structure also has the ability to scatter unabsorbed light into patterns and intensities that are ineffective to photoresist material exposed to the patterns and intensities. Preferred antireflective structures of the present invention comprise a semiconductor substrate having thereon at least one layer of a silicon-containing metal or silicon-containing metal nitride. The semiconductor substrate will preferably have thereon a feature size with width dimension less than about 0.5 microns, and more preferably less than about 0.25 microns.
    Type: Grant
    Filed: January 3, 2000
    Date of Patent: June 22, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Yongjun Hu
  • Publication number: 20040108563
    Abstract: Antireflective structures comprise a metal silicon nitride composition in a layer that is superposed upon a layer to be patterned that would otherwise cause destructive reflectivity during photoresist patterning. The antireflective structure has the ability to absorb light used during photoresist patterning. The antireflective structure also has the ability to scatter unabsorbed light into patterns and intensities that are ineffective to photoresist material exposed to the patterns and intensities. Preferred antireflective structures comprise a semiconductor substrate having thereon at least one layer of a silicon-containing metal or silicon-containing metal nitride. One preferred material for the inventive antireflective layer includes metal silicon nitride ternary compounds of the general formula MxSiyNz wherein M is at least one transition metal, x is less than y, and z is in a range from about 0 to about 5y.
    Type: Application
    Filed: August 14, 2003
    Publication date: June 10, 2004
    Applicant: Micron Technology, Inc.
    Inventor: Yongjun Hu
  • Patent number: 6689685
    Abstract: A process is disclosed for manufacturing a film that is smooth and has large nitride grains of a diffusion barrier material. Under the process, a nitride of the diffusion barrier material is deposited by physical vapor deposition in an environment of nitrogen. The nitrogen content of the environment is selected at an operating level such that nitride nuclei of the diffusion barrier material are evenly distributed. A grain growth step is then conducted in the nitrogen environment to grow a film of large nitride grains of the diffusion barrier material. Also disclosed is a stack structure suitable for MOS memory circuits incorporating a lightly nitrided refractory metal suicide diffusion barrier with a covering of a nitride of a diffusion barrier material. The stack structure is formed in accordance with the diffusion barrier material nitride film manufacturing process and exhibits high thermal stability, low resistivity, long range agglomeration blocking, and high surface smoothness.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: February 10, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Yongjun Hu
  • Patent number: 6680246
    Abstract: A process is disclosed for manufacturing a film that is smooth and has large nitride grains of a diffusion barrier material. Under the process, a nitride of the diffusion barrier material is deposited by physical vapor deposition in an environment of nitrogen. The nitrogen content of the environment is selected at an operating level such that nitride nuclei of the diffusion barrier material are evenly distributed. A grain growth step is then conducted in the nitrogen environment to grow a film of large nitride grains of the diffusion barrier material. Also disclosed is a stack structure suitable for MOS memory circuits incorporating a lightly nitrided refractory metal silicide diffusion barrier with a covering of a nitride of a diffusion barrier material. The stack structure is formed in accordance with the diffusion barrier material nitride film manufacturing process and exhibits high thermal stability, low resistivity, long range agglomeration blocking, and high surface smoothness.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: January 20, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Yongjun Hu
  • Patent number: 6627389
    Abstract: Antireflective structures according to the present invention comprise a metal silicon nitride composition in a layer that is superposed upon a layer to be patterned that would other wise cause destructive reflectivity during photoresist patterning. The antireflective structure has the ability to absorb light used during photoresist patterning. The antireflective structure also has the ability to scatter unabsorbed light into patterns and intensities that are ineffective to photoresist material exposed to the patterns and intensities. One preferred material for the antireflective layer includes metal silicon nitride ternary compounds of the general formula MxSiyNz, where M is at least one transition metal, x is less than y and z is greater than about 0 and less than about 5y.
    Type: Grant
    Filed: August 2, 2000
    Date of Patent: September 30, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Yongjun Hu
  • Patent number: 6614085
    Abstract: Antireflective structures according to the present invention comprise a metal silicon nitride composition in a layer that is superposed upon a layer to be patterned that would other wise cause destructive reflectivity during photoresist patterning. The antireflective structure has the ability to absorb light used during photoresist patterning. The antireflective structure also has the ability to scatter unabsorbed light into patterns and intensities that are ineffective to photoresist material exposed to the patterns and intensities. Preferred antireflective structures of the present invention comprise a semiconductor substrate having thereon at least one layer of a silicon-containing metal or silicon-containing metal nitride. The semiconductor substrate will preferably have thereon a feature size with width dimension less than about 0.5 microns, and more preferably less than about 0.25 microns.
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: September 2, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Yongjun Hu
  • Publication number: 20030045046
    Abstract: A process is disclosed for manufacturing a film that is smooth and has large nitride grains of a diffusion barrier material. Under the process, a nitride of the diffusion barrier material is deposited by physical vapor deposition in an environment of nitrogen. The nitrogen content of the environment is selected at an operating level such that nitride nuclei of the diffusion barrier material are evenly distributed. A grain growth step is then conducted in the nitrogen environment to grow a film of large nitride grains of the diffusion barrier material. Also disclosed is a stack structure suitable for MOS memory circuits incorporating a lightly nitrided refractory metal suicide diffusion barrier with a covering of a nitride of a diffusion barrier material. The stack structure is formed in accordance with the diffusion barrier material nitride film manufacturing process and exhibits high thermal stability, low resistivity, long range agglomeration blocking, and high surface smoothness.
    Type: Application
    Filed: October 15, 2002
    Publication date: March 6, 2003
    Applicant: Micron Technology, Inc.
    Inventor: Yongjun Hu