Patents by Inventor YongQing Wang

YongQing Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11125552
    Abstract: A rapid detection method for the geometric accuracy of the linear motion axis of an NC machine tool, uses accelerometers to measure the acceleration perpendicular to the direction of motion when the linear motion axis moves at a uniform speed. Firstly, the measuring device is mounted on the linear motion axis, and the upper measurement system automatically performs multi-channel acquisition and storage of the motion point acceleration data. Then, filter the acceleration data at the different speeds. Finally, the displacement data is obtained by quadratic integration of the filtered acceleration data in the time domain. Then calculate the straightness of the linear motion axis using the End Point Fit method, and complete the rapid measurement of the straightness of the linear motion axis of the machine tool. This can realize the rapid measurement of the geometric accuracy of the linear motion axis of the machine tool.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: September 21, 2021
    Assignee: DALIAN UNIVERSITY OF TECHNOLOGY
    Inventors: Yongqing Wang, Haibo Liu, Jiakun Wu, Kuo Liu, Kang Kuang, Dawei Li
  • Publication number: 20210287098
    Abstract: An on line prediction method of part surface roughness based on SDAE-DBN algorithm. The tri-axis acceleration sensor is adsorbed on the rear bearing of the machine tool spindle through the magnetic seat to collect the vibration signals of the cutting process, and a microphone is placed in the left front of the processed part to collect the noise signals of the cutting process of the machine tool; the trend term of dynamic signal is eliminated, and the signal is smoothed; a stacked denoising autoencoder is constructed, and the greedy algorithm is used to train the network, and the extracted features are used as the input of deep belief network to train the network; the real-time vibration and noise signals in the machining process are input into the deep network after data processing, and the current surface roughness is set as output by the network.
    Type: Application
    Filed: February 28, 2020
    Publication date: September 16, 2021
    Inventors: Kuo LIU, Mingrui SHEN, Bo QIN, Renjie HUANG, Mengmeng NIU, Yongqing WANG
  • Publication number: 20210197335
    Abstract: The invention provides a data augmentation method based on generative adversarial networks in tool condition monitoring. Firstly, the sensor acquisition system is used to obtain the vibration signal and noise signal during the cutting process of the tool; second, the noise data subject to the prior distribution is input to the generator to generate data, and the generated data and the collected real sample data are input to the discriminator for identification, the confrontation training between the generator and the discriminator until the training is completed; then, use the trained generator to generate sample data, and determine whether the generated sample data and the actual tool state sample data are similar in distribution; finally, combined with the accuracy of the deep learning network model to predict the state of the tool to verify the availability of the generated data.
    Type: Application
    Filed: February 28, 2020
    Publication date: July 1, 2021
    Inventors: Yongqing WANG, Mengmeng NIU, Kuo LIU, Bo QIN, Mingrui SHEN, Dawei LI
  • Publication number: 20210190627
    Abstract: The invention provides a dynamic seal test device for cryogenic fluid medium. The dynamic seal test device includes stator unit, rotor unit, slipway, servo motor unit and sensors. The tested seal is installed inside the stator, and the thermal insulation stator and vacuum rotor together form a dynamic seal test structure. The seals and shaft sleeves can be flexibly replaced, which is beneficial to study the influence of different seal types, structure, and seal land configurations on the sealing performance. The servo motor provides power for the rotor and controls the rotation speed. The device greatly improves the thermal insulation capacity to avoid the gasification for the cryogenic fluid medium induced by the heat transfer from environment so that ensuring the stability of the test device.
    Type: Application
    Filed: September 16, 2019
    Publication date: June 24, 2021
    Inventors: Yongqing WANG, Lingsheng HAN, Kuo LIU, Fanze KONG, Haibo LIU, Yongquan GAN, Minghua DAI
  • Publication number: 20210178542
    Abstract: The invention provides a toolholder matched with the internal jet cooling spindle for cryogenic coolant. The toolholder is mainly composed of a hollow toolholder body, a high-performance thermal insulation structure and a bidirectional sealing structure. They can guide the cryogenic coolant from the spindle to the internal cooling channel of tool and realize the cryogenic thermal insulation and dynamic sealing. The high-performance thermal insulation structure inside the toolholder employs the material with a low thermal conductivity and a low linear expansion coefficient to restrain the low temperature impact of cryogenic coolant on the toolholder and spindle, to ensure the dimensional accuracy and assembly accuracy of the toolholder. The bidirectional sealing structure in the toolholder uses the ultra-low temperature resistant seal rings to prevent the cryogenic coolant from leaking towards the spindle and the tool, to ensure the stability of the coolant transport.
    Type: Application
    Filed: September 12, 2019
    Publication date: June 17, 2021
    Inventors: Yongqing WANG, Lingsheng HAN, Kuo LIU, Haibo LIU, Zaiyou BAN, Bo QIN
  • Publication number: 20210178535
    Abstract: The present invention relates to a slanting-bed feed processing machine tool of a large propeller. The machine tool comprises a slanting column feed bed, a machine tool spindle, a workpiece rotary worktable, a large propeller and a bed feed mechanism. The present invention coordinates the geometrical relationship between the machine tool and the large propeller to ensure that the slanting column feed bed moves between two blades, thereby reducing the overhang length of the spindle. Different forms of workpiece rotary worktables and bed feed mechanisms are selected according to different slanting column feed beds. Four types of slanting column feed beds are designed, which can be selected, optimized and applied for different processing objects. The present invention enhances the processing stiffness of the spindle and solves the problem of poor processing quality of the large propeller caused by machine tool vibration.
    Type: Application
    Filed: February 28, 2020
    Publication date: June 17, 2021
    Inventors: Yongqing WANG, Tianran LIU, Haibo LIU, Kuo LIU, Te LI, Dongming GUO
  • Patent number: 11009857
    Abstract: An application method of the thermal error-temperature loop in the spindle of a CNC machine tool. This uses a bar and two displacement sensors to determine radial thermal errors of the spindle. Meanwhile two temperature sensors are used to determine the temperature of the upper and lower surfaces of the spindle box. Then, the thermal error-temperature loop is drawn with the temperature difference between two temperature sensors as the abscissa and the radial thermal error of the spindle as the ordinate. Finally, the loop is employed to analyze the mechanism of the radial thermal deformation of the spindle and the thermal error level is evaluated. Since the method is based on measured data, the results of the analysis are closer to the reality, compared to those from the numerical simulations.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: May 18, 2021
    Assignee: DALIAN UNIVERSITY OF TECHNOLOGY
    Inventors: Kuo Liu, Haibo Liu, Te Li, Haining Liu, Yongqing Wang, Zhenyuan Jia
  • Patent number: 10946459
    Abstract: A magnetorheological support method for blisk processing is disclosed. In the method, a fork structure and a soft film are used to wrap magnetorheological fluid. The magnetorheological fluid is used for flow filling under certain pressure. The bulged soft film can conduct shape matching on the surface of a blisk blade. The magnetorheological fluid can be cured through magnetic field excitation, thereby ensuring the flexible support for a weak rigid component. Electric permanent magnets are symmetrically arranged at both ends of the fork structure to construct a uniform magnetic field that can realize a global excitation of magnetorheological fluid, so that the magnetorheological fluid works in a shear mode to achieve damping force controlling by magnetic field. The solid-liquid conversion of the magnetorheological fluid is controlled by an electric permanent magnet field.
    Type: Grant
    Filed: September 29, 2019
    Date of Patent: March 16, 2021
    Assignee: DALIAN UNIVERSITY OF TECHNOLOGY
    Inventors: Haibo Liu, Qi Luo, Junpeng Wang, Te Li, Kuo Liu, Yongqing Wang
  • Publication number: 20210072195
    Abstract: A large-panel ultrasonic on-machine scanning thickness measurement equipment and method is disclosed. A GNCMT is adopted as the measuring machine main body on which a measured large panel is clamped and conducts scanning measurement motion; a non-contact ultrasonic measurement device is installed on the spindle of the machine tool for realizing transmission and acquisition of ultrasonic signals; a coupling liquid circulation system with the functions of multi-layer filtering, flow monitoring and regulation is set up; a jet flow immersion coupling mode is adopted on the surface of the measured large panel, and micro-emulsion cutting fluid is used as compatible coupling liquid of ultrasonic on-machine thickness measurement; and the coupling liquid is recycled, purified and stably supplied circularly. The thickness measurement equipment has high multi-function integration and reliable performance.
    Type: Application
    Filed: September 29, 2019
    Publication date: March 11, 2021
    Inventors: Yongqing WANG, Haibo LIU, Te LI, Meng LIAN, Kuo LIU, Zhenyuan JIA
  • Publication number: 20210064988
    Abstract: A method for calculating the reliability of the thermal error model of a machine tool based on deep neural network (DNN) and the Monte Carlo method, which belongs to the field of the thermal error compensation of computer numerical control (CNC) machine tools. Firstly, according to the probability distribution of the thermal parameters and thermal error model, a set of data for training the DNN is generated. Next, the DNN is constructed based on the deep belief networks (DBNs) and trained with the training data. Then, a group of random sampling data is obtained according to the probability distribution of the thermal characteristic parameters of the machine tool, and the group of random sampling is taken as the input and the output is obtained by the trained depth neural network. Finally, the reliability of the thermal error model is calculated based on the Monte Carlo method.
    Type: Application
    Filed: February 26, 2019
    Publication date: March 4, 2021
    Inventors: Kuo LIU, Yongqing WANG, Xu LI, Bo QIN, Yongquan GAN, Dawei LI, Haining LIU
  • Publication number: 20210048793
    Abstract: A spindle thermal error compensation method which is insensitive to the disturbance of the cooling system is provided, belonging to the technical field of error compensation in numerical control machine tools. First, the spindle model coefficient identification test, based on multi-state speed variable, is performed; after which, based on the correlation analysis between temperature and thermal error, the temperature measurement point, significantly correlated with the axial thermal error of the spindle, is determined. Next, a spindle thermal error model is established, which is insensitive to the cooling system disturbance. In addition, the coefficients in the model are identified under constraint condition, according to the nonlinear quadratic programming algorithm. Finally, based on the OPC UA communication protocol, the compensation value, as calculated by the model, is input to the numerical control system, in order to realize the compensation of the spindle thermal error.
    Type: Application
    Filed: February 21, 2019
    Publication date: February 18, 2021
    Inventors: Kuo LIU, Bo QIN, Xu LI, Yongquan GAN, Wei HAN, Renjie HUANG, Yongqing WANG
  • Publication number: 20210023667
    Abstract: An online geometric/thermal error measurement and compensation system for computer numerically controlled (CNC) machine tools belonging to the technical field of error testing and compensation of CNC machine tools. The online CNC machine tool geometric/thermal error measurement and compensation system includes two parts: the hardware platform and the measurement and compensation software. The hardware platform includes a unidirectional acceleration sensor, a precision integrated circuit (IC) temperature sensor, a multi-channel temperature data collector, and a geometric/thermal error measurement and compensation host. The error measurement and compensation software runs in the geometric/thermal error measurement and compensation host and realizes testing and compensation of geometric and thermal errors in machine tools, which are communicated to the FANUC CNC system.
    Type: Application
    Filed: February 21, 2019
    Publication date: January 28, 2021
    Inventors: Kuo LIU, Te LI, Yongquan GAN, Wei HAN, Dawei LI, Zhisong LIU, Yongqing WANG
  • Publication number: 20210026319
    Abstract: A self-adaptive compensation method for feed axis thermal error, which belongs to the field of error compensation in NC machine tools. First, based on laser interferometer and temperature sensor, the feed axis thermal error test is carried out; following, the thermal error prediction model, based on the feed axis thermal error mechanism, is established and the thermal characteristic parameters in the model are identified, based on the thermal error test data; next, the parameter identification test is carried out, under the preload state of the nut; next, the adaptive prediction model is established, based on the thermal error prediction model, while the parameters in the measurement model are identified; finally, adaptive compensation of thermal errors is performed, based on the adaptive error prediction model, according to the generated feed axis heat.
    Type: Application
    Filed: February 21, 2019
    Publication date: January 28, 2021
    Inventors: Kuo LIU, Yongqing WANG, Jiakun WU, Haining LIU, Mingrui SHEN, Bo QIN, Haibo LIU
  • Patent number: 10900779
    Abstract: A method for the rapid detection of the linear axis angular error of an NC machine tool, belongs to the technical field of NC machine tool testing. Firstly, the measuring device is mounted on the linear axis. Then, the linear axis moves at three different speeds at a constant speed, and the upper measurement system automatically performs multi-channel acquisition and storage of the motion measurement's point measurement data. Then, based on the same geometric error signal, it is decomposed into the different frequency components, and the measurement angle error is filtered at the different speeds. Finally, the measurement angle errors at the three speeds after filtering are superimposed to complete the rapid measurement of the linear axis angular error of the machine tool. The measurement efficiency is high and data processing capability is strong.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: January 26, 2021
    Assignee: DALIAN UNIVERSITY OF TECHNOLOGY
    Inventors: Yongqing Wang, Kuo Liu, Jiakun Wu, Haibo Liu, Zhisong Liu, Haining Liu
  • Publication number: 20200376571
    Abstract: A magnetorheological support method for blisk processing is disclosed. In the method, a fork structure and a soft film are used to wrap magnetorheological fluid. The magnetorheological fluid is used for flow filling under certain pressure. The bulged soft film can conduct shape matching on the surface of a blisk blade. The magnetorheological fluid can be cured through magnetic field excitation, thereby ensuring the flexible support for a weak rigid component. Electric permanent magnets are symmetrically arranged at both ends of the fork structure to construct a uniform magnetic field that can realize a global excitation of magnetorheological fluid, so that the magnetorheological fluid works in a shear mode to achieve damping force controlling by magnetic field. The solid-liquid conversion of the magnetorheological fluid is controlled by an electric permanent magnet field.
    Type: Application
    Filed: September 29, 2019
    Publication date: December 3, 2020
    Inventors: Haibo LIU, Qi LUO, Junpeng WANG, Te LI, Kuo LIU, Yongqing WANG
  • Patent number: 10838392
    Abstract: The invention provides a method for modeling and compensating for the spindle's radial thermal drift error in a horizontal CNC lathe, which belongs to the field of error compensation technology of CNC machine tools. Firstly, the thermal drift error of two points in the radial direction of the spindle and the corresponding temperature of the key points are tested; then the thermal inclination angle of the spindle is obtained based on the thermal tilt deformation mechanism of the spindle, and the correlation between the thermal inclination angle and the temperature difference between the left and right sides of the spindle box is analyzed. According to the positive or negative thermal drift error of the two points that have been measured and the elongation or shortening of the spindle box on the left and right sides, the thermal deformation of the spindle is then classified and the thermal drift error model under various thermal deformation attitudes is then established.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: November 17, 2020
    Assignee: DALIAN UNIVERSITY OF TECHNOLOGY
    Inventors: Kuo Liu, Yongqing Wang, Haibo Liu, Te Li, Haining Liu, Dawei Li
  • Patent number: 10814448
    Abstract: A comprehensive performance evaluation method for the CNC machine tools based on an improved pull-off method belongs to the technical field of performance evaluation of CNC machine tools. A linear proportional method is used to standardize the performance index data of machine tool. The entropy weight method and mean variance method are used to determine the two objective weights of each level of indicator. Based on the principle of vector A comprehensive evaluation of three-level index is obtained from the linear weighted evaluation function. Finally, a similar method was used to calculate the comprehensive evaluation of a large system layer by layer. The present invention is used for the comprehensive performance evaluation of various CNC machine tools and also for a lateral comparison of specific performance of different machine tools, providing a scientific and possible evaluation method and process for the comprehensive performance evaluation of machine tools.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: October 27, 2020
    Assignee: DALIAN UNIVERSITY OF TECHNOLOGY
    Inventors: Kuo Liu, Haibo Liu, Te Li, Heng Chu, Yongqing Wang, Zhenyuan Jia
  • Patent number: 10815146
    Abstract: The application relates to bond materials for a grinding wheel, in particular a glass ceramic and a preparation method thereof, and a bond for the composite grinding wheel. The glass ceramic is prepared from raw materials comprising kaolin, silica, diboron trioxide, lithium superoxide, albite, potassium feldspar, talc, dolomite, phosphorus pentoxide, and yttrium oxide. A glass ceramic composed entirely of microcrystalline phases is obtained from the glass prepared by the above raw materials at 900-1020° C., achieving a complete conversion of the glass phase at a low temperature. The application also provides a bond for a composite grinding wheel, comprising glass ceramic and glass with mass ratio of (20-50):(50-80), the glass phase having a low flow temperature and, together with the glass ceramic phase, forming encapsulation of the abrasive particles, realizing low-temperature sintering of the grinding wheel.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: October 27, 2020
    Assignees: JIANGXI GUANYI ABRASIVES CO., LTD, JINGDEZHEN CERAMIC INSTITUTE
    Inventors: Zhuohao Xiao, Yongqing Wang, Weimin Yi, Min Wu, Nir Rushkin, Chenhao Yi
  • Publication number: 20200311321
    Abstract: The present invention provides a method for determining the real-time thermal deformation attitude of the spindle and it belongs to the technical field of error testing of the CNC machine tools. Firstly, the temperature and the displacement sensors are applied to determine the temperature of the upper and lower surfaces of the spindle box and the radial thermal error of the running spindle, respectively. Then, the thermal variation of the upper and lower surfaces of the spindle box is calculated in accordance with the radial thermal error of the spindle. Then the model for the thermal variation and the temperature of the upper and lower surfaces of the spindle box is established. Finally, the established model is employed to determine the real-time thermal deformation attitude of the spindle, according to the real-time temperatures of the upper and lower surface of the spindle box.
    Type: Application
    Filed: February 21, 2019
    Publication date: October 1, 2020
    Inventors: Kuo LIU, Haibo LIU, Lingsheng HAN, Yongquan GAN, Wei HAN, Te LI, Yongqing WANG
  • Publication number: 20200282503
    Abstract: A comprehensive performance evaluation method for the CNC machine tools based on an improved pull-off method belongs to the technical field of performance evaluation of CNC machine tools. A linear proportional method is used to standardize the performance index data of machine tool. The entropy weight method and mean variance method are used to determine the two objective weights of each level of indicator. Based on the principle of vector A comprehensive evaluation of three-level index is obtained from the linear weighted evaluation function. Finally, a similar method was used to calculate the comprehensive evaluation of a large system layer by layer. The present invention is used for the comprehensive performance evaluation of various CNC machine tools and also for a lateral comparison of specific performance of different machine tools, providing a scientific and possible evaluation method and process for the comprehensive performance evaluation of machine tools.
    Type: Application
    Filed: August 28, 2018
    Publication date: September 10, 2020
    Inventors: Kuo LIU, Haibo LIU, Te LI, Heng CHU, Yongqing WANG, Zhenyuan JIA