Patents by Inventor Yoshihisa Inada

Yoshihisa Inada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240103215
    Abstract: An advance in the art is made according to aspects of the present disclosure directed to methods for earthquake sensing that employ a supervisory system of undersea fiber optic cables. Earthquakes and other environmental disturbances are detected by monitoring the polarization of interrogation light instead of its phase. More specifically, our methods monitor the transfer matrix rather than just polarization and isolate disturbance location by monitoring eigenvalues of the polarization transfer matrix. From results obtained we have demonstrated experimentally that we can monitor disturbances that affect signal polarization on a span-by-span basis using High Loss Loop Back (HLLB) paths. It is shown that by measuring the polarization rotation matrix and determining the polarization rotation angle we can identify the span where the disturbance occurred with 35 dB extinction with no limitation on the magnitude of the disturbance and the number of affected spans.
    Type: Application
    Filed: September 15, 2023
    Publication date: March 28, 2024
    Applicants: NEC Laboratories America, Inc., NEC Corporation
    Inventors: Fatih YAMAN, Shaobo HAN, Eduardo Fabian MATEO RODRIGUEZ, Yang LI, Yoshihisa INADA, Takanori INOUE
  • Patent number: 11933605
    Abstract: Aspects of the present disclosure describe estimating/measuring core-cladding concentricity error in optical fibers. In sharp contrast to the prior art, our inventive method is based on measuring a seemingly unrelated property of fibers called guided acoustic wave Brillouin scattering (GAWBS). As we shall show and describe, by analyzing this GAWBS property we advantageously determine what level of CCCE is exhibited by the optical fiber.
    Type: Grant
    Filed: January 17, 2022
    Date of Patent: March 19, 2024
    Assignee: NEC Corporation
    Inventors: Fatih Yaman, Hussam Batshon, Shinsuke Fujisawa, Kohei Nakamura, Takanori Inoue, Eduardo Mateo Rodriguez, Yoshihisa Inada
  • Publication number: 20240089094
    Abstract: A hybrid Quantum Key Distribution (QKD) protocol and method for secure transmission in optical communications systems and in particular long distance optical communications systems such as those in undersea environments. Our inventive method advantageously exploits fundamental security features of quantum-base encryption with the added intrinsic security of encapsulated and sealed equipment of undersea optical networks. Our method employs an intermediate node that generates an optical signal, and a pair of quantum state generators that respectively generate quantum states of the optical signal and transmit the generated quantum states to secure nodes, respectively. The secure nodes then communicate securely using a quantum key distribution (QKD) protocol.
    Type: Application
    Filed: September 13, 2023
    Publication date: March 14, 2024
    Applicant: NEC Laboratories America, Inc.
    Inventors: Eduardo FABIAN MATEO RODRIGUEZ, Yoshihisa INADA
  • Patent number: 11888583
    Abstract: Aspects of the present disclosure describe systems, methods. and structures directed to an integrated 3-way branching unit switch module suitable for undersea application.
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: January 30, 2024
    Assignee: NEC Corporation
    Inventors: Fatih Yaman, Shinsuke Fujisawa, Hussam Batshon, Takigawa Yoshinari, Ryuji Aida, Takanori Inoue, Eduardo Rodriguez, Yoshihisa Inada
  • Publication number: 20230344521
    Abstract: In order to avoid the phenomenon of communication being impeded and signals transmitted by the plurality of slave devices overlapping, a communication system according to the present invention has the first master device transmits a first pulsed light to the first transmission path and receives a return light of the first pulsed light from the second transmission path; each of the slave devices modulates the first pulsed light, and outputs the modulated first pulsed light as the return light of the first pulsed light; and the width of the first pulsed light is narrower than double the shortest distance from among the transmission distance between the slave device outputting the return light and the transmission distance between the first master device and the slave device outputting the return light.
    Type: Application
    Filed: September 27, 2021
    Publication date: October 26, 2023
    Applicant: NEC Corporation
    Inventors: Yutaka YANO, Yoshihisa Inada, Takehiro Nakano, Ryuji Aida
  • Patent number: 11782217
    Abstract: Aspects of the present disclosure describe methods for reducing guided acoustic wave Brillouin (GAWBS) noise in an optical fiber that may be included in an optical communications system by reducing the polarization diffusion length of the fiber by increasing the birefringence of the optical fiber, the increased birefringence of the optical fiber being increased with respect to its average magnitude. Additionally, the polarization diffusion length is reduced by reducing the coherence length of birefringence of the optical fiber.
    Type: Grant
    Filed: March 1, 2022
    Date of Patent: October 10, 2023
    Assignee: NEC Corporation
    Inventors: Fatih Yaman, Eduardo Mateo Rodriguez, Hassam Batshon, Shinsuke Fujisawa, Kohei Nakamura, Takanori Inoue, Yoshihisa Inada
  • Patent number: 11700067
    Abstract: Aspects of the present disclosure describe a three-way branching unit switch module having a small footprint suitable for application in an undersea application.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: July 11, 2023
    Assignee: NEC Corporation
    Inventors: Fatih Yaman, Shinsuke Fujisawa, Hussam Batshon, Yoshinari Takigawa, Ryu Kurahashi, Ryuji Aida, Kohei Nakamura, Takanori Inoue, Eduardo Rodriguez, Yoshihisa Inada
  • Publication number: 20220381932
    Abstract: Earthquake detection via fiber sensing is provided using using a supervisory path of submarine cables wherein the supervisory system/path of a submarine optical cable conveys portion(s) of an optical signal back to an origin location periodically—i.e., at every repeater location. Advantageously, since it is known where a returning signal is coming from, a resolution equivalent to an undersea span length may be determined—which is sufficient for wide area disturbances such as earthquakes. The returned signal is sufficiently strong such that the signal-to-noise ratio of a returned/received signal is not limited by the ASE noise of the amplifiers. The returned signal is much larger as compared to a normal distributed acoustic sensing (DAS) return signal since the return signal according to aspects of the present disclosure is directed backward via an optical coupler/reflector/circulator having a much larger coupling ratio as compared to normal Rayleigh back scattering utilized in DAS.
    Type: Application
    Filed: May 31, 2022
    Publication date: December 1, 2022
    Applicant: NEC LABORATORIES AMERICA, INC
    Inventors: Fatih YAMAN, Yue-Kai HUANG, Ezra IP, Hussam BATSHON, Eduardo Mateo RODRIGUEZ, Kohei NAKAMURA, Takanori INOUE, Yoshihisa INADA
  • Patent number: 11467061
    Abstract: Aspects of the present disclosure describe a method for estimating mode field distribution in optical fibers from guided acoustic-wave Brillouin scattering wherein light for which the optical mode-field distribution is determined remains in the optical fibers and the distribution is made for light inside the fiber, and not at a fiber/air interface or other perturbation points to the fiber resulting in a more accurate representation of the optical mode-field distribution in the fiber. Since light is always in the fiber during the determination, no complicated fiber preparation steps or procedures are required and the mode-field distribution is determined as an average distribution along the length of the fiber under test.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: October 11, 2022
    Inventors: Fatih Yaman, Eduardo Mateo Rodriguez, Shinsuke Fujisawa, Hussam Batshon, Kohei Nakamura, Takanori Inoue, Yoshihisa Inada, Takaaki Ogata
  • Publication number: 20220308290
    Abstract: Aspects of the present disclosure describe methods for reducing guided acoustic wave Brillouin (GAWBS) noise in an optical fiber that may be included in an optical communications system by reducing the polarization diffusion length of the fiber by increasing the birefringence of the optical fiber, the increased birefringence of the optical fiber being increased with respect to its average magnitude. Additionally, the polarization diffusion length is reduced by reducing the coherence length of birefringence of the optical fiber.
    Type: Application
    Filed: March 1, 2022
    Publication date: September 29, 2022
    Applicants: NEC LABORATORIES AMERICA, INC, NEC Corporation
    Inventors: Fatih YAMAN, Eduardo Mateo RODRIGUEZ, Hassam BATSHON, Shinsuke FUJISAWA, Kohei NAKAMURA, Takanori INOUE, Yoshihisa INADA
  • Patent number: 11451317
    Abstract: An optical transmission system includes: a terminal station device that transmits a wavelength multiplexed optical signal resulting from multiplexing an optical signal and dummy light; and an optical add-drop multiplexer that receives respective wavelength multiplexed optical signals transmitted from a plurality of the terminal station devices and performs add-drop processing on the wavelength multiplexed optical signals. The dummy light has a wavelength arrangement in which adjacent wavelengths are arranged with equal spacing, and the wavelength arrangement of the dummy light differs between the terminal station devices.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: September 20, 2022
    Assignee: NEC CORPORATION
    Inventor: Yoshihisa Inada
  • Publication number: 20220278748
    Abstract: Aspects of the present disclosure are directed to systems, methods, and structures providing for the accurate measurement of guided acoustic-wave Brillouin scattering in optical fiber transmission systems and facilities.
    Type: Application
    Filed: June 1, 2021
    Publication date: September 1, 2022
    Applicants: NEC LABORATORIES AMERICA, INC, NEC Corporation
    Inventors: Fatih YAMAN, Eduardo Mateo RODRIGUEZ, Shinsuke FUJISAWA, Hussam BATSHON, Kohei NAKAMURA, Takanori INOUE, Yoshihisa INADA, Takaaki OGATA
  • Publication number: 20220228859
    Abstract: Aspects of the present disclosure describe estimating/measuring core-cladding concentricity error in optical fibers. In sharp contrast to the prior art, our inventive method is based on measuring a seemingly unrelated property of fibers called guided acoustic wave Brillouin scattering (GAWBS). As we shall show and describe, by analyzing this GAWBS property we advantageously determine what level of CCCE is exhibited by the optical fiber.
    Type: Application
    Filed: January 17, 2022
    Publication date: July 21, 2022
    Applicants: NEC LABORATORIES AMERICA, INC, NEC Corporation
    Inventors: Fatih YAMAN, Hussam BATSHON, Shinsuke FUJISAWA, Kohei NAKAMURA, Takanori INOUE, Eduardo Mateo RODRIGUEZ, Yoshihisa INADA
  • Publication number: 20220182170
    Abstract: Aspects of the present disclosure describe systems, methods. and structures directed to an integrated 3-way branching unit switch module suitable for undersea application.
    Type: Application
    Filed: December 6, 2021
    Publication date: June 9, 2022
    Applicant: NEC LABORATORIES AMERICA, INC
    Inventors: Fatih YAMAN, Shinsuke FUJISAWA, Hussam BATSHON, Takigawa YOSHINARI, Ryuji AIDA, Takanori INOUE, Eduardo Rodriguez, Yoshihisa INADA
  • Publication number: 20220173808
    Abstract: Aspects of the present disclosure describe systems, methods. and structures in which guided acoustic Brillouin (GAWBS) noise is measured using a homodyne measurement technique and demonstrated using a number of optical fibers, such fibers being commonly used in contemporary optical communications systems. The measurements are made with single spans and determined to be consistent with separate multi-span long-distance measurements. Additionally, a technique for preparing an optical fiber exhibiting superior GAWBS noise characteristics by reducing coherence length of the optical fiber by spinning the fiber at a high rate during the drawing process such that birefringence coherence length is reduced.
    Type: Application
    Filed: December 1, 2021
    Publication date: June 2, 2022
    Applicant: NEC LABORATORIES AMERICA, INC
    Inventors: Fatih YAMAN, Kohei NAKAMURA, Takanori INOUE, Eduardo Mateo RODRIGUEZ, Shinsuke FUJISAWA, Hussam BATSHON, Yoshihisa INADA, Takaaki OGATA
  • Publication number: 20220085896
    Abstract: Aspects of the present disclosure describe a three-way branching unit switch module having a small footprint suitable for application in an undersea application.
    Type: Application
    Filed: September 7, 2021
    Publication date: March 17, 2022
    Applicants: NEC Laboratories America, Inc., NEC Corporation
    Inventors: Fatih YAMAN, Shinsuke FUJISAWA, Hussam BATSHON, Yoshinari Takigawa, Ryu Kurahashi, Ryuji Aida, Kohei NAKAMURA, Takanori INOUE, Eduardo RODRIGUEZ, Yoshihisa INADA
  • Patent number: 11270200
    Abstract: Aspects of the present disclosure describe a method for digital coherent transmission systems that advantageously provides low-complexity, single-step nonlinearity compensation based on artificial intelligence (AI) implemented in a deep neuron network (DNN).
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: March 8, 2022
    Inventors: Shaoliang Zhang, Fatih Yaman, Ting Wang, Eduardo Rodriguez, Yoshihisa Inada, Kohei Nakamura, Takanori Inoue
  • Publication number: 20220011195
    Abstract: Aspects of the present disclosure describe a method for estimating mode field distribution in optical fibers from guided acoustic-wave Brillouin scattering wherein light for which the optical mode-field distribution is determined remains in the optical fibers and the distribution is made for light inside the fiber, and not at a fiber/air interface or other perturbation points to the fiber resulting in a more accurate representation of the optical mode-field distribution in the fiber. Since light is always in the fiber during the determination, no complicated fiber preparation steps or procedures are required and the mode-field distribution is determined as an average distribution along the length of the fiber under test.
    Type: Application
    Filed: June 7, 2021
    Publication date: January 13, 2022
    Applicants: NEC LABORATORIES AMERICA, INC, NEC Corporation
    Inventors: Fatih YAMAN, Eduardo Mateo RODRIGUEZ, Shinsuke FUJISAWA, Hussam BATSHON, Kohei NAKAMURA, Takanori INOUE, Yoshihisa INADA, Takaaki OGATA
  • Publication number: 20210320741
    Abstract: An optical transmission system includes: a terminal station device that transmits a wavelength multiplexed optical signal resulting from multiplexing an optical signal and dummy light; and an optical add-drop multiplexer that receives respective wavelength multiplexed optical signals transmitted from a plurality of the terminal station devices and performs add-drop processing on the wavelength multiplexed optical signals. The dummy light has a wavelength arrangement in which adjacent wavelengths are arranged with equal spacing, and the wavelength arrangement of the dummy light differs between the terminal station devices.
    Type: Application
    Filed: June 23, 2021
    Publication date: October 14, 2021
    Applicant: NEC Corporation
    Inventor: Yoshihisa INADA
  • Publication number: 20210256347
    Abstract: Aspects of the present disclosure describe optical transmission systems exhibiting low complexity fiber nonlinearity compensation provided by neural networks using lookup tables for multiplication operations.
    Type: Application
    Filed: January 12, 2021
    Publication date: August 19, 2021
    Applicant: NEC LABORATORIES AMERICA, INC
    Inventors: Shinsuke FUJISAWA, Fatih YAMAN, Eduardo Mateo RODRIGUEZ, Yoshihisa INADA, Kohei NAKAMURA, Takanori INOUE