Patents by Inventor Yoshihisa Inada

Yoshihisa Inada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11095388
    Abstract: The de-multiplexing unit 2 de-multiplexes an inputted optical wavelength multiplexed signal into a first optical wavelength multiplexed signal having a first wavelength band and a second optical wavelength multiplexed signal having a second wavelength band in a longer wavelength band than the first wavelength band. The first optical amplifier 3 amplifies the first optical wavelength multiplexed signal. The second optical amplifier 4 amplifies the second optical wavelength multiplexed signal. The multiplexer 5 multiplexes the amplified first optical wavelength multiplexed signal and the amplified second optical wavelength multiplexed signal and outputs the multiplexed signal to a Raman amplifier 6. The first optical amplifier 3 adjusts the amplification rate of the first optical wavelength multiplexed signal so that the intensity of light in the second wavelength band is compensated for by the Raman effect in the Raman amplifier 6.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: August 17, 2021
    Assignee: NEC CORPORATION
    Inventor: Yoshihisa Inada
  • Patent number: 11082144
    Abstract: An optical transmission system includes: a terminal station device that transmits a wavelength multiplexed optical signal resulting from multiplexing an optical signal and dummy light; and an optical add-drop multiplexer that receives respective wavelength multiplexed optical signals transmitted from a plurality of the terminal station devices and performs add-drop processing on the wavelength multiplexed optical signals. The dummy light has a wavelength arrangement in which adjacent wavelengths are arranged with equal spacing, and the wavelength arrangement of the dummy light differs between the terminal station devices.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: August 3, 2021
    Assignee: NEC CORPORATION
    Inventor: Yoshihisa Inada
  • Patent number: 11043786
    Abstract: Aspects of the present disclosure describe systems, methods, and structures that advantageously amplify optical signals through the effect of optical pump signals generated by a multicore laser diode and multicore rare-earth doped optical fiber in optical communication with a 3D waveguide structure and a multicore input signal fiber providing a plurality of optical signals for amplification.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: June 22, 2021
    Inventors: Fatih Yaman, Shaoliang Zhang, Eduardo Mateo Rodriguez, Kohei Nakamura, Yoshihisa Inada, Takanori Inoue
  • Publication number: 20200403383
    Abstract: Aspects of the present disclosure describe systems, methods and structures for providing semiconductor amplifiers exhibiting a low polarization-dependent gain.
    Type: Application
    Filed: June 17, 2020
    Publication date: December 24, 2020
    Applicant: NEC LABORATORIES AMERICA, INC
    Inventors: Fatih YAMAN, Shinsuke FUJISAWA, Eduardo Mateo RODRIGUEZ, Kohei NAKAMURA, Takanori INOUE, Yoshihisa INADA, Takaaki OGATA
  • Patent number: 10833770
    Abstract: Aspects of the present disclosure describe systems, methods and structures for optical fiber nonlinearity compensation using neural networks that advantageously employ machine learning (ML) algorithms for nonlinearity compensation (NLC) that advantageously provide a system-agnostic model independent of link parameters, and yet still achieve a similar or better performance at a lower complexity as compared with prior-art methods. Systems, methods, and structures according to aspects of the present disclosure include a data-driven model using the neural network (NN) to predict received signal nonlinearity without prior knowledge of the link parameters. Operationally, the NN is provided with intra-channel cross-phase modulation (IXPM) and intra-channel four-wave mixing (IFWM) triplets that advantageously provide a more direct pathway to underlying nonlinear interactions.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: November 10, 2020
    Assignee: NEC Corporation
    Inventors: Shaoliang Zhang, Fatih Yaman, Eduardo Rodriguez, Yoshihisa Inada, Kohei Nakamura, Takanori Inoue
  • Publication number: 20200313790
    Abstract: The de-multiplexing unit 2 de-multiplexes an inputted optical wavelength multiplexed signal into a first optical wavelength multiplexed signal having a first wavelength band and a second optical wavelength multiplexed signal having a second wavelength band in a longer wavelength band than the first wavelength band. The first optical amplifier 3 amplifies the first optical wavelength multiplexed signal. The second optical amplifier 4 amplifies the second optical wavelength multiplexed signal. The multiplexer 5 multiplexes the amplified first optical wavelength multiplexed signal and the amplified second optical wavelength multiplexed signal and outputs the multiplexed signal to a Raman amplifier 6. The first optical amplifier 3 adjusts the amplification rate of the first optical wavelength multiplexed signal so that the intensity of light in the second wavelength band is compensated for by the Raman effect in the Raman amplifier 6.
    Type: Application
    Filed: September 18, 2018
    Publication date: October 1, 2020
    Applicant: NEC Corporation
    Inventor: Yoshihisa INADA
  • Patent number: 10708094
    Abstract: Systems and methods for transmission filtering are provided. A receiver includes an input coupled to a transmission line to receive distorted optical symbols. A distortion filter is coupled to the input to replace the distorted optical symbols with predicted symbols using a trained neural network. A decoder is coupled to the distortion filter to decode the predicted symbols.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: July 7, 2020
    Assignee: NEC Corporation
    Inventors: Fatih Yaman, Shaoliang Zhang, Eduardo Mateo Rodriguez, Yoshihisa Inada, Yue-Kai Huang, Weiyang Mo
  • Patent number: 10581216
    Abstract: An optical communication substrate includes a plurality of cores to communicate optical signals; a rectangular input delivering a pump laser, and a shaped portion to combine the optical signals and the pump laser into a ring geometry at an output.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: March 3, 2020
    Assignee: NEC Corporation
    Inventors: Fatih Yaman, Shaoliang Zhang, Eduardo Mateo Rodriquez, Takanori Inoue, Yoshihisa Inada, Takaaki Ogata
  • Publication number: 20190393965
    Abstract: Aspects of the present disclosure describe systems, methods and structures for optical fiber nonlinearity compensation using neural networks that advantageously employ machine learning (ML) algorithms for nonlinearity compensation (NLC) that advantageously provide a system-agnostic model independent of link parameters, and yet still achieve a similar or better performance at a lower complexity as compared with prior-art methods. Systems, methods, and structures according to aspects of the present disclosure include a data-driven model using the neural network (NN) to predict received signal nonlinearity without prior knowledge of the link parameters. Operationally, the NN is provided with intra-channel cross-phase modulation (IXPM) and intra-channel four-wave mixing (IFWM) triplets that advantageously provide a more direct pathway to underlying nonlinear interactions.
    Type: Application
    Filed: June 21, 2019
    Publication date: December 26, 2019
    Applicant: NEC LABORATORIES AMERICA, INC
    Inventors: Shaoliang ZHANG, Fatih YAMAN, Eduardo RODRIGUEZ, Yoshihisa INADA, Kohei NAKAMURA, Takanori INOUE
  • Publication number: 20190280452
    Abstract: An optical amplification device is provided for supplying pump light with different distribution ratio to a plurality of optical fiber amplifiers with high reliability. The optical amplification device includes: a plurality of optical fiber amplifiers (102, 112); and an asymmetric coupling optical system (100) configure to input a plurality of pump light beams (P1, P2) and output a plurality of branched pump light beams (P12_C, P12_D) which are supplied respectively to the plurality of optical fiber amplifiers, the asymmetric coupling optical system including at least one asymmetric coupler (100) of 2-input, 2-output type having a predetermined asymmetric branching ratio, wherein a desired intensity difference between the plurality of branched pump light beams is set by adjusting an intensity of at least one input light beam of the asymmetric coupler.
    Type: Application
    Filed: November 27, 2017
    Publication date: September 12, 2019
    Applicant: NEC Corporation
    Inventor: Yoshihisa INADA
  • Patent number: 10401564
    Abstract: Aspects of the present disclosure describe fiber nonlinearity induced transmission penalties are reduced both in fibers with large polarization-mode dispersion, and in coupled-core multicore fibers (CC-MCF). In the case of coupled multi-core fibers, the requirement for modal delay is less.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: September 3, 2019
    Assignee: NEC CORPORATION
    Inventors: Fatih Yaman, Shaoliang Zhang, Eduardo Mateo Rodriguez, Takanori Inoue, Kohei Nakamura, Yoshihisa Inada, Takaaki Ogata
  • Publication number: 20190266480
    Abstract: Aspects of the present disclosure describe a method for digital coherent transmission systems that advantageously provides low-complexity, single-step nonlinearity compensation based on artificial intelligence (AI) implemented in a deep neuron network (DNN).
    Type: Application
    Filed: February 26, 2019
    Publication date: August 29, 2019
    Applicant: NEC LABORATORIES AMERICA, INC
    Inventors: Shaoliang ZHANG, Fatih YAMAN, Ting WANG, Eduardo RODRIGUEZ, Yoshihisa INADA, Kohei NAKAMURA, Takanori INOUE
  • Patent number: 10382138
    Abstract: Aspects of the present disclosure describe methods of generating an optimized set of constellation symbols for an optical transmission network wherein the optimized constellation is based on GMI cost and considers both fiber nonlinearity and linear transmission noise.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: August 13, 2019
    Assignee: NEC CORPORATION
    Inventors: Shaoliang Zhang, Fatih Yaman, Eduardo Mateo Rodriguez, Yoshihisa Inada
  • Patent number: 10374632
    Abstract: Systems and methods for data transport in optical communications systems, including a transmitter for encoding a received information sequence by constructing an outer and inner quasi cyclic-low-density parity check (QC-LDPC) code. The encoding includes dividing the received information sequence into a plurality of messages of equal length, encoding each of the messages into a codeword to generate a plurality of outer codewords, cascading the plurality of outer codewords to generate a bit sequence, and executing inner encoding to encode each of the plurality of outer codewords into codewords in QC-LDPC inner code. A receiver decodes a received data stream based on the QC-LDPC inner code using two-phase decoding including iteratively performing at least one of inner/outer and outer/inner decoding until a threshold condition is reached.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: August 6, 2019
    Assignee: NEC Corporation
    Inventors: Shaoliang Zhang, Fatih Yaman, Ting Wang, Yoshihisa Inada
  • Patent number: 10340649
    Abstract: Aspects of the present disclosure describe systems, methods, and structures for providing C-band and L-band transmission exhibiting increased power efficiency by diverting a portion of C-band optical energy to an input of L-band optical amplifiers (C-seeding) while optionally employing circulators to eliminate the need for optical isolators.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: July 2, 2019
    Assignee: NEC CORPORATION
    Inventors: Fatih Yaman, Shaoliang Zhang, Eduardo Mateo Rodriquez, Takanori Inoue, Yoshihisa Inada
  • Publication number: 20190149259
    Abstract: An optical transmission system includes: a terminal station device that transmits a wavelength multiplexed optical signal resulting from multiplexing an optical signal and dummy light; and an optical add-drop multiplexer that receives respective wavelength multiplexed optical signals transmitted from a plurality of the terminal station devices and performs add-drop processing on the wavelength multiplexed optical signals. The dummy light has a wavelength arrangement in which adjacent wavelengths are arranged with equal spacing, and the wavelength arrangement of the dummy light differs between the terminal station devices.
    Type: Application
    Filed: January 11, 2019
    Publication date: May 16, 2019
    Applicant: NEC Corporation
    Inventor: Yoshihisa INADA
  • Publication number: 20190107671
    Abstract: Aspects of the present disclosure describe fiber nonlinearity induced transmission penalties are reduced both in fibers with large polarization-mode dispersion, and in coupled-core multicore fibers (CC-MCF). In the case of coupled multi-core fibers, the requirement for modal delay is less.
    Type: Application
    Filed: October 9, 2018
    Publication date: April 11, 2019
    Inventors: Fatih YAMAN, Shaoliang ZHANG, EDUARDO MATEO RODRIGUEZ, TAKANORI INOUE, KOHEI NAKAMURA, YOSHIHISA INADA, TAKAAKI OGATA
  • Publication number: 20190109736
    Abstract: Systems and methods for transmission filtering are provided. A receiver includes an input coupled to a transmission line to receive distorted optical symbols. A distortion filter is coupled to the input to replace the distorted optical symbols with predicted symbols using a trained neural network. A decoder is coupled to the distortion filter to decode the predicted symbols.
    Type: Application
    Filed: October 5, 2018
    Publication date: April 11, 2019
    Inventors: Fatih Yaman, Shaoliang Zhang, Eduardo Mateo Rodriguez, Yoshihisa Inada, Yue-Kai Huang, Weiyang Mo
  • Patent number: 10236989
    Abstract: Systems and methods for data transport in an optical communications system, including generating a pairwise optimized (PO) multi-dimensional signal constellation in a single stage. The PO multi-dimensional signal constellation is generated by selecting a pair of symbols from a received constellation with M symbols, defining and minimizing an objective function with one or more constraints to optimize the selected pair of symbols, and iteratively selecting and optimizing one or more different pairs of symbols from the received constellation until a threshold condition is reached. Neighbor symbols from the generated PO multi-dimensional signal constellation in each polarization are clustered to formulate a clustered PO multi-dimensional signal constellation, and data is modulated and transmitted in accordance with the clustered PO multi-dimensional signal constellation.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: March 19, 2019
    Assignee: NEC Corporation
    Inventors: Shaoliang Zhang, Fatih Yaman, Eduardo Mateo Rodriguez, Yoshihisa Inada
  • Patent number: 10230483
    Abstract: An optical transmission system includes: a terminal station device that transmits a wavelength multiplexed optical signal resulting from multiplexing an optical signal and dummy light; and an optical add-drop multiplexer that receives respective wavelength multiplexed optical signals transmitted from a plurality of the terminal station devices and performs add-drop processing on the wavelength multiplexed optical signals. The dummy light has a wavelength arrangement in which adjacent wavelengths are arranged with equal spacing, and the wavelength arrangement of the dummy light differs between the terminal station devices.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: March 12, 2019
    Assignee: NEC Corporation
    Inventor: Yoshihisa Inada