Patents by Inventor Yoshiki Yamamoto

Yoshiki Yamamoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10014067
    Abstract: To provide a semiconductor device equipped with anti-fuse memory cells, which is capable of improving read-out accuracy of information. There is provided a semiconductor device in which an N channel type memory transistor, a selection core transistor, and a selection bulk transistor are respectively electrically coupled in series. The memory transistor and the selection core transistor are formed in a silicon layer of an SOI substrate, and the selection bulk transistor is formed in a semiconductor substrate. A word line is coupled to a memory gate electrode of the memory transistor, and a bit line is coupled to the selection bulk transistor. A write-in operation is performed while applying a counter voltage opposite in polarity to a voltage applied from the word line to the memory gate electrode to the bit line.
    Type: Grant
    Filed: December 17, 2016
    Date of Patent: July 3, 2018
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Keiichi Maekawa, Shiro Kamohara, Yasushi Yamagata, Yoshiki Yamamoto
  • Patent number: 10002885
    Abstract: A substrate in which an insulating layer, a semiconductor layer and an insulating film are stacked on a semiconductor substrate and an element isolation region is embedded in a trench is prepared. After the insulating film in a bulk region is removed by dry etching and the semiconductor layer in the bulk region is removed by dry etching, the insulating layer in the bulk region is thinned by dry etching. A first semiconductor region is formed in the semiconductor substrate in a SOI region by ion implantation, and a second semiconductor region is formed in the semiconductor substrate in the bulk region by ion implantation. Then, the insulating film in the SOI region and the insulating layer in the bulk region are removed by wet etching. Thereafter, a first transistor is formed on the semiconductor layer in the SOI region and a second transistor is formed on the semiconductor substrate in the bulk region.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: June 19, 2018
    Assignee: Renesas Electronics Corporation
    Inventor: Yoshiki Yamamoto
  • Patent number: 9978839
    Abstract: Occurrence of short-channel characteristics and parasitic capacitance of a MOSFET on a SOI substrate is prevented. A sidewall having a stacked structure obtained by sequentially stacking a silicon oxide film and a nitride film is formed on a side wall of a gate electrode on the SOI substrate. Subsequently, after an epitaxial layer is formed beside the gate electrode, and then, the nitride film is removed. Then, an impurity is implanted into an upper surface of the semiconductor substrate with using the gate electrode and the epitaxial layer as a mask, so that a halo region is formed in only a region of the upper surface of the semiconductor substrate which is right below a vicinity of both ends of the gate electrode.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: May 22, 2018
    Assignee: Renesas Electronics Corporation
    Inventors: Yoshiki Yamamoto, Hideki Makiyama, Toshiaki Iwamatsu, Takaaki Tsunomura
  • Publication number: 20180138204
    Abstract: Reliability of a semiconductor device is improved. A p-type MISFET of a thin film SOI type is formed in an SOI substrate including a semiconductor substrate, an insulating layer on the semiconductor substrate, and a semiconductor layer on the insulating layer, and n+-type semiconductor regions which are source and drain region of the p-type MISFET are formed in the semiconductor layer and an epitaxial layer on the semiconductor layer. A semiconductor layer is formed via the insulating layer below the p-type MISFET formed in the n-type well region of the semiconductor substrate. In an n-type tap region which is a power supply region of the n-type well region, a silicide layer is formed on a main surface of the n-type well region without interposing the epitaxial layer therebetween.
    Type: Application
    Filed: September 30, 2017
    Publication date: May 17, 2018
    Inventors: Nobuo TSUBOI, Yoshiki YAMAMOTO
  • Publication number: 20180122826
    Abstract: A semiconductor device using an SOI (Silicon On Insulator) substrate, capable of preventing malfunction of MISFETs (Metal Insulator Semiconductor Field Effect Transistor) and thus improving the reliability of the semiconductor device. Moreover, the parasitic resistance of the MISFETs is reduced, and the performance of the semiconductor device is improved. An epitaxial layer formed on an SOI layer above an SOI substrate is formed to have a large width so as to cover the ends of the upper surface of an isolation region adjacent to the SOI layer. By virtue of this, contact plugs of which formation positions are misaligned are prevented from being connected to a semiconductor substrate below the SOI layer. Moreover, by forming the epitaxial layer at a large width, the ends of the SOI layer therebelow are prevented from being silicided. As a result, increase in the parasitic resistance of MISFETs is prevented.
    Type: Application
    Filed: December 19, 2017
    Publication date: May 3, 2018
    Inventor: Yoshiki Yamamoto
  • Patent number: 9953987
    Abstract: A semiconductor device, including: a semiconductor substrate having a first well region; an insulating layer formed on a first portion of the semiconductor substrate, and contacted with the first well region; a semiconductor layer formed on the insulating layer; an element isolation region reaching to an inside of the first well region, in a cross-sectional view; a first gate electrode layer formed on a first portion of the semiconductor layer via a first gate insulating film; a second gate electrode layer formed on both a second portion of the semiconductor layer via a second gate insulating film and a first portion of the element isolation region; an interlayer insulating film covering the first gate electrode layer, the second gate electrode layer and a second portion of the element isolation region; a first plug conductor layer formed in the interlayer insulating film.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: April 24, 2018
    Assignee: Renesas Electronics Corporation
    Inventor: Yoshiki Yamamoto
  • Patent number: 9935125
    Abstract: On a semiconductor substrate having an SOI region and a bulk silicon region formed on its upper surface, epitaxial layers are formed in source and drain regions of a MOSFET formed in the SOI region, and no epitaxial layer is formed in source and drain regions of a MOSFET formed in the bulk silicon region. By covering the end portions of the epitaxial layers with silicon nitride films, even when diffusion layers are formed by implanting ions from above the epitaxial layers, it is possible to prevent the impurity ions from being implanted down to a lower surface of a silicon layer.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: April 3, 2018
    Assignee: Renesas Electronics Corporation
    Inventors: Takaaki Tsunomura, Yoshiki Yamamoto, Masaaki Shinohara, Toshiaki Iwamatsu, Hidekazu Oda
  • Publication number: 20180083044
    Abstract: A substrate in which an insulating layer, a semiconductor layer and an insulating film are stacked on a semiconductor substrate and an element isolation region is embedded in a trench is prepared. After the insulating film in a bulk region is removed by dry etching and the semiconductor layer in the bulk region is removed by dry etching, the insulating layer in the bulk region is thinned by dry etching. A first semiconductor region is formed in the semiconductor substrate in a SOI region by ion implantation, and a second semiconductor region is formed in the semiconductor substrate in the bulk region by ion implantation. Then, the insulating film in the SOI region and the insulating layer in the bulk region are removed by wet etching. Thereafter, a first transistor is formed on the semiconductor layer in the SOI region and a second transistor is formed on the semiconductor substrate in the bulk region.
    Type: Application
    Filed: August 16, 2017
    Publication date: March 22, 2018
    Inventor: Yoshiki YAMAMOTO
  • Publication number: 20180069014
    Abstract: An insulating film, which is sandwiched between a gate electrode formed on an SOI layer constituting an SOI substrate and an epitaxial layer formed on the SOI layer and including a high-concentration diffusion region and is formed in contact with a side wall of the gate electrode, is set as a target of dielectric breakdown in a write operation in an anti-fuse element.
    Type: Application
    Filed: November 13, 2017
    Publication date: March 8, 2018
    Inventor: Yoshiki Yamamoto
  • Patent number: 9887211
    Abstract: A semiconductor device using an SOI (Silicon On Insulator) substrate, capable of preventing malfunction of MISFETs (Metal Insulator Semiconductor Field Effect Transistor) and thus improving the reliability of the semiconductor device. Moreover, the parasitic resistance of the MISFETs is reduced, and the performance of the semiconductor device is improved. An epitaxial layer formed on an SOI layer above an SOI substrate is formed to have a large width so as to cover the ends of the upper surface of an isolation region adjacent to the SOI layer. By virtue of this, contact plugs of which formation positions are misaligned are prevented from being connected to a semiconductor substrate below the SOI layer. Moreover, by forming the epitaxial layer at a large width, the ends of the SOI layer therebelow are prevented from being silicided. As a result, increase in the parasitic resistance of MISFETs is prevented.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: February 6, 2018
    Assignee: Renesas Electronics Corporation
    Inventor: Yoshiki Yamamoto
  • Publication number: 20180019260
    Abstract: On a semiconductor substrate having an SOI region and a bulk silicon region formed on its upper surface, epitaxial layers are formed in source and drain regions of a MOSFET formed in the SOI region, and no epitaxial layer is formed in source and drain regions of a MOSFET formed in the bulk silicon region. By covering the end portions of the epitaxial layers with silicon nitride films, even when diffusion layers are formed by implanting ions from above the epitaxial layers, it is possible to prevent the impurity ions from being implanted down to a lower surface of a silicon layer.
    Type: Application
    Filed: September 5, 2017
    Publication date: January 18, 2018
    Inventors: Takaaki TSUNOMURA, Yoshiki YAMAMOTO, Masaaki SHINOHARA, Toshiaki IWAMATSU, Hidekazu ODA
  • Publication number: 20170365330
    Abstract: A semiconductor device includes a substrate, a circuit having a transistor formed on the substrate, an oscillation circuit generating a frequency signal, a substrate voltage generation circuit generating a substrate voltage in accordance with the frequency signal from the oscillation circuit, and a control circuit varying a frequency of the frequency signal from the oscillation circuit during a stand-by period of the circuit.
    Type: Application
    Filed: June 12, 2017
    Publication date: December 21, 2017
    Applicant: Renesas Electronics Corporation
    Inventor: Yoshiki YAMAMOTO
  • Patent number: 9837424
    Abstract: An insulating film, which is sandwiched between a gate electrode formed on an SOI layer constituting an SOI substrate and an epitaxial layer formed on the SOI layer and including a high-concentration diffusion region and is formed in contact with a side wall of the gate electrode, is set as a target of dielectric breakdown in a write operation in an anti-fuse element.
    Type: Grant
    Filed: October 3, 2015
    Date of Patent: December 5, 2017
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventor: Yoshiki Yamamoto
  • Publication number: 20170330885
    Abstract: A semiconductor device, including: a semiconductor substrate having a first well region; an insulating layer formed on a first portion of the semiconductor substrate, and contacted with the first well region; a semiconductor layer formed on the insulating layer; an element isolation region reaching to an inside of the first well region, in a cross-sectional view; a first gate electrode layer formed on a first portion of the semiconductor layer via a first gate insulating film; a second gate electrode layer formed on both a second portion of the semiconductor layer via a second gate insulating film and a first portion of the element isolation region; an interlayer insulating film covering the first gate electrode layer, the second gate electrode layer and a second portion of the element isolation region; a first plug conductor layer formed in the interlayer insulating film.
    Type: Application
    Filed: August 2, 2017
    Publication date: November 16, 2017
    Inventor: Yoshiki YAMAMOTO
  • Publication number: 20170294513
    Abstract: Occurrence of short-channel characteristics and parasitic capacitance of a MOSFET on a SOI substrate is prevented. A sidewall having a stacked structure obtained by sequentially stacking a silicon oxide film and a nitride film is formed on a side wall of a gate electrode on the SOI substrate. Subsequently, after an epitaxial layer is formed beside the gate electrode, and then, the nitride film is removed. Then, an impurity is implanted into an upper surface of the semiconductor substrate with using the gate electrode and the epitaxial layer as a mask, so that a halo region is formed in only a region of the upper surface of the semiconductor substrate which is right below a vicinity of both ends of the gate electrode.
    Type: Application
    Filed: June 21, 2017
    Publication date: October 12, 2017
    Inventors: Yoshiki YAMAMOTO, Hideki MAKIYAMA, Toshiaki IWAMATSU, Takaaki TSUNOMURA
  • Publication number: 20170287795
    Abstract: When VC inspection for a TEG is performed, it is easily detected whether any failure of a contact plug occurs or not by increasing an emission intensity of a contact plug, so that reliability of a semiconductor device is improved. An element structure of an SRAM is formed on an SOI substrate in a chip region. Also, in a TEG region, an element structure of an SRAM in which a contact plug is connected to a semiconductor substrate is formed on the semiconductor substrate exposed from an SOI layer and a BOX film as a TEG used for the VC inspection.
    Type: Application
    Filed: June 22, 2017
    Publication date: October 5, 2017
    Inventors: Yoshiki YAMAMOTO, Tetsuya YOSHIDA, Koetsu SAWAI
  • Patent number: 9773872
    Abstract: Occurrence of short-channel characteristics and parasitic capacitance of a MOSFET on a SOI substrate is prevented. A sidewall having a stacked structure obtained by sequentially stacking a silicon oxide film and a nitride film is formed on a side wall of a gate electrode on the SOI substrate. Subsequently, after an epitaxial layer is formed beside the gate electrode, and then, the nitride film is removed. Then, an impurity is implanted into an upper surface of the semiconductor substrate with using the gate electrode and the epitaxial layer as a mask, so that a halo region is formed in only a region of the upper surface of the semiconductor substrate which is right below a vicinity of both ends of the gate electrode.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: September 26, 2017
    Assignee: Renesas Electronics Corporation
    Inventors: Yoshiki Yamamoto, Hideki Makiyama, Toshiaki Iwamatsu, Takaaki Tsunomura
  • Publication number: 20170263328
    Abstract: To provide a semiconductor device equipped with anti-fuse memory cells, which is capable of improving read-out accuracy of information. There is provided a semiconductor device in which an N channel type memory transistor, a selection core transistor, and a selection bulk transistor are respectively electrically coupled in series. The memory transistor and the selection core transistor are formed in a silicon layer of an SOI substrate, and the selection bulk transistor is formed in a semiconductor substrate. A word line is coupled to a memory gate electrode of the memory transistor, and a bit line is coupled to the selection bulk transistor. A write-in operation is performed while applying a counter voltage opposite in polarity to a voltage applied from the word line to the memory gate electrode to the bit line.
    Type: Application
    Filed: December 17, 2016
    Publication date: September 14, 2017
    Inventors: Keiichi MAEKAWA, Shiro KAMOHARA, Yasushi YAMAGATA, Yoshiki YAMAMOTO
  • Patent number: 9754661
    Abstract: A semiconductor device with reduced power consumption. The device includes: an n-type well region overlying the main surface of a semiconductor substrate; an element isolation region overlying the main surface; a first and a second active region located in the n-type well region and surrounded by the element isolation region; an insulating film overlying the main surface in the first active region; a semiconductor layer overlying the insulating film; a gate electrode layer overlying the semiconductor layer through a gate insulating film; a p-type source and a drain region formed in the semiconductor layer at both ends of the gate electrode layer; a dummy gate electrode layer overlying the semiconductor layer through the gate insulating film; an n-type semiconductor region overlying an n-type well region surface in the second active region; and a power supply wiring coupled with the n-type semiconductor region. The dummy gate electrode layer is electrically floating.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: September 5, 2017
    Assignee: Renesas Electronics Corporation
    Inventor: Yoshiki Yamamoto
  • Patent number: 9721857
    Abstract: When VC inspection for a TEG is performed, it is easily detected whether any failure of a contact plug occurs or not by increasing an emission intensity of a contact plug, so that reliability of a semiconductor device is improved. An element structure of an SRAM is formed on an SOI substrate in a chip region. Also, in a TEG region, an element structure of an SRAM in which a contact plug is connected to a semiconductor substrate is formed on the semiconductor substrate exposed from an SOI layer and a BOX film as a TEG used for the VC inspection.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: August 1, 2017
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Yoshiki Yamamoto, Tetsuya Yoshida, Koetsu Sawai