Patents by Inventor Yoshinari Ishii

Yoshinari Ishii has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200325934
    Abstract: On an inner peripheral surface of a bearing hole into which a shaft is inserted, concave oil supply surfaces arranged dispersively like separated islands and a sliding surface continuous around the oil supply surfaces to hold an outer peripheral surface of the shaft are formed: a maximum height difference between the sliding surface and the oil supply surfaces is not less than 0.01% and not more than 0.5% of an inner diameter Di of the sliding surface; a surface aperture area ratio of pores at the sliding surface is not more than 10%; a surface aperture area ratio of pores at the oil supply surfaces is more than 10% and less than 40%; and an area of each of the oil supply surfaces is not less than 0.03 mm2 and not more than 0.2×Di2 (mm2).
    Type: Application
    Filed: November 14, 2018
    Publication date: October 15, 2020
    Applicants: MITSUBISHI MATERIALS CORPORATION, DIAMET CORPORATION
    Inventors: Hajime Kouno, Yoshinari Ishii, Tsuneo Maruyama, Jyun Katou, Kenji Orito
  • Patent number: 10745780
    Abstract: Provided is a Cu-based sintered bearing comprising: 15-36 mass % of Ni; 3-13 mass % of Sn; 0.05-0.55 mass % of P; and 0.02-4 mass % of C in total, the balance consisting of Cu and inevitable impurities, wherein the content of C forming an alloy with a matrix within Cu—Ni-based main phase grains is 0.02-0.10 mass %.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: August 18, 2020
    Assignee: Diamet Corporation
    Inventors: Yoshinari Ishii, Shinichi Takezoe, Tsuneo Maruyama
  • Patent number: 10697495
    Abstract: A sintered bearing exhibits a less of a hard iron alloy phase, and has an excellent wear resistance and cost performance under low-revolution and high-load use conditions. The sintered bearing contains Cu: 10 to 55% by mass, Sn: 0.5 to 7% by mass, Zn: 0 to 4% by mass, P: 0 to 0.6% by mass, C: 0.5 to 4.5% by mass and a remainder composed of Fe and inevitable impurities. An area ratio of a free graphite dispersed in a metal matrix of the bearing is 5 to 35%; an area ratio of a copper phase in the metal matrix of a bearing surface is not less than 30%; a porosity thereof is 16 to 25%; a hardness of an iron alloy phase in the matrix is Hv 65 to 200; and raw material powders employ at least one of a crystalline graphite powder and a flake graphite powder each having an average particle size of 10 to 100 ?m.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: June 30, 2020
    Assignee: Diamet Corporation
    Inventors: Yoshinari Ishii, Yasuhiro Tsukada, Tomoe Obata
  • Patent number: 10683566
    Abstract: Provided is a Cu-based sintered bearing comprising: 15-36 mass % of Ni; 3-13 mass % of Sn; 0.05-0.55 mass % of P; and 0.02-4 mass % of C in total, the balance consisting of Cu and inevitable impurities, wherein the content of C forming an alloy with a matrix within Cu—Ni-based main phase grains is 0.02-0.10 mass %.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: June 16, 2020
    Assignee: Diamet Corporation
    Inventors: Yoshinari Ishii, Shinichi Takezoe, Tsuneo Maruyama
  • Publication number: 20200180032
    Abstract: Provided is a novel sintered oil-impregnated bearing superior in wear resistance and cost performance under a severe use condition where the bearing collides with a shaft due to a high load and vibration, such as a condition associated with an output shaft of an electric motor installed in a vehicle and a wiper motor installed therein. The sintered oil-impregnated bearing contains: 15 to 30% by mass of Cu; 1 to 4% by mass of C; and a remainder consisting of Fe and inevitable impurities, in which a metal structure with copper being melted therein is provided at least on a bearing surface; pearlite or a pearlite with ferrite being partially scattered therein is provided in a matrix; a copper-rich phase arranged in a mesh-like manner is also provided in the matrix; and a free graphite is dispersed and distributed in the matrix as well.
    Type: Application
    Filed: September 20, 2018
    Publication date: June 11, 2020
    Applicant: Diamet Corporation
    Inventors: Yoshinari ISHII, Tsuneo MARUYAMA
  • Patent number: 10654104
    Abstract: A sintered bearing comprises: a bearing sleeve that is formed of a sintered material and has a shaft hole; an annular ring-shaped seal member that is disposed such that one surface thereof comes into contact with the bearing sleeve; and a washer member that comes into contact with the other surface of the seal member on a side opposite to the one surface and is configured for the seal member to engage with the bearing sleeve. The washer member is fixed to the bearing sleeve.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: May 19, 2020
    Assignees: Diamet Corporation, MITSUBISHI CABLE INDUSTRIES, LTD.
    Inventors: Tsuneo Maruyama, Yoshinari Ishii, Nobukazu Fujii, Takayuki Suenaga
  • Patent number: 10570959
    Abstract: An oil-retaining sintered bearing in which friction coefficient can be reduced and a sliding property as a bearing can be improved by supplying a sufficient amount of oil to a sliding surface and preventing the supplied oil from moving to an interior from the sliding surface; a sliding surface 3 supporting an outer peripheral surface of a shaft and a helical oiling surface 4 around a shaft axis of a bearing hole are adjacently formed on an inner peripheral surface of the bearing hole into which the shaft is inserted; a surface open rate at the sliding surface 3 is not larger than 10%; and a surface open rate at the oiling surface exceeds 10%.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: February 25, 2020
    Assignees: MITSUBISHI MATERIALS CORPORATION, DIAMET CORPORATION
    Inventors: Hajime Kouno, Yoshinari Ishii, Jyun Katou
  • Patent number: 10532406
    Abstract: A sintered sliding material with excellent corrosion resistance, heat resistance, and wear resistance is provided. The sintered sliding material has a composition made of: 36-86 mass % of Ni; 1-11 mass % of Sn; 0.05-1.0 mass % of P; 1-9 mass % of C; and the Cu balance including inevitable impurities. The sintered sliding material is made of a sintered material of a plurality of grains of alloy of Ni—Cu alloy or Cu—Ni alloy, the Ni—Cu alloy and the Cu—Ni alloy containing Sn, P, C, and Si; has a structure in which pores are dispersedly formed in grain boundaries of the plurality of the grains of alloy; and as inevitable impurities in a matrix constituted from the grains of alloy, a C content is 0.6 mass % or less and a Si content is 0.15 mass % or less.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: January 14, 2020
    Assignee: Diamet Corporation
    Inventors: Shinichi Takezoe, Yoshinari Ishii
  • Publication number: 20190366440
    Abstract: A sintered bearing comprises: a bearing sleeve that is formed of a sintered material and has a shaft hole; an annular ring-shaped seal member that is disposed such that one surface thereof comes into contact with the bearing sleeve; and a washer member that comes into contact with the other surface of the seal member on a side opposite to the one surface and is configured for the seal member to engage with the bearing sleeve. The washer member is fixed to the bearing sleeve.
    Type: Application
    Filed: November 16, 2017
    Publication date: December 5, 2019
    Applicants: Diamet Corporation, MITSUBISHI CABLE INDUSTRIES, LTD.
    Inventors: Tsuneo MARUYAMA, Yoshinari ISHII, Nobukazu FUJII, Takayuki SUENAGA
  • Publication number: 20190360528
    Abstract: In order to supply sufficient amount of oil to one or more sliding surfaces and to prevent the supplied oil from moving from the sliding surface(s) to an inside so as to achieve lower friction and improve sliding performance of a bearing, in an oil-impregnated sintered bearing 1, sliding surfaces 3 supporting an outer circumferential surface of a shaft 11 and an oil supply surface 4 in which a diameter is larger than that of the sliding surfaces 3 are formed on an inner circumferential surface of a bearing hole 2 into which the shaft 11 is inserted, to be adjacent in an axial direction of the bearing hole 2, a height gap “d1” between the sliding surfaces 3 and the oil supply surface 4 is not less than 0.
    Type: Application
    Filed: December 20, 2017
    Publication date: November 28, 2019
    Applicants: MITSUBISHI MATERIALS CORPORATION, DIAMET CORPORATION
    Inventors: Hajime Kouno, Yoshinari Ishii, Tsuneo Maruyama, Jyun Katou, Kenji Orito
  • Publication number: 20190345980
    Abstract: A sintered bearing exhibits a less of a hard iron alloy phase, and has an excellent wear resistance and cost performance under low-revolution and high-load use conditions. The sintered bearing contains Cu: 10 to 55% by mass, Sn: 0.5 to 7% by mass, Zn: 0 to 4% by mass, P: 0 to 0.6% by mass, C: 0.5 to 4.5% by mass and a remainder composed of Fe and inevitable impurities. An area ratio of a free graphite dispersed in a metal matrix of the bearing is 5 to 35%; an area ratio of a copper phase in the metal matrix of a bearing surface is not less than 30%; a porosity thereof is 16 to 25%; a hardness of an iron alloy phase in the matrix is Hv 65 to 200; and raw material powders employ at least one of a crystalline graphite powder and a flake graphite powder each having an average particle size of 10 to 100 ?m.
    Type: Application
    Filed: July 29, 2019
    Publication date: November 14, 2019
    Applicant: Diamet Corporation
    Inventors: Yoshinari ISHII, Yasuhiro TSUKADA, Tomoe OBATA
  • Patent number: 10428873
    Abstract: A sintered bearing exhibits less of a hard iron alloy phase, and has an excellent wear resistance and cost performance under low-revolution and high-load use conditions; and a method for producing such a sintered bearing. The sintered bearing contains Cu: 10 to 55% by mass, Sn: 0.5 to 7% by mass, Zn: 0 to 4% by mass, P: 0 to 0.6% by mass, C: 0.5 to 4.5% by mass and a remainder composed of Fe and inevitable impurities. An area ratio of a free graphite dispersed in a metal matrix of the bearing is 5 to 35%; a porosity thereof is 16 to 25%; a hardness of an iron alloy phase in the matrix is Hv 65 to 200; and raw material powders employ at least one of a crystalline graphite powder and a flake graphite powder each having an average particle size of 10 to 100 ?m.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: October 1, 2019
    Assignee: Diamet Corporation
    Inventors: Yoshinari Ishii, Yasuhiro Tsukada, Tomoe Obata
  • Publication number: 20190203770
    Abstract: A sintered bearing exhibits less of a hard iron alloy phase, and has an excellent wear resistance and cost performance under low-revolution and high-load use conditions; and a method for producing such a sintered bearing. The sintered bearing contains Cu: 10 to 55% by mass, Sn: 0.5 to 7% by mass, Zn: 0 to 4% by mass, P: 0 to 0.6% by mass, C: 0.5 to 4.5% by mass and a remainder composed of Fe and inevitable impurities. An area ratio of a free graphite dispersed in a metal matrix of the bearing is 5 to 35%; a porosity thereof is 16 to 25%; a hardness of an iron alloy phase in the matrix is Hv 65 to 200; and raw material powders employ at least one of a crystalline graphite powder and a flake graphite powder each having an average particle size of 10 to 100 ?m.
    Type: Application
    Filed: July 27, 2017
    Publication date: July 4, 2019
    Applicant: Diamet Corporation
    Inventors: Yoshinari ISHII, Yasuhiro TSUKADA, Tomoe OBATA
  • Publication number: 20190203321
    Abstract: Provided is a Cu-based sintered bearing comprising: 15-36 mass % of Ni; 3-13 mass % of Sn; 0.05-0.55 mass % of P; and 0.02-4 mass % of C in total, the balance consisting of Cu and inevitable impurities, wherein the content of C forming an alloy with a matrix within Cu-Ni-based main phase grains is 0.02-0.10 mass %.
    Type: Application
    Filed: March 6, 2019
    Publication date: July 4, 2019
    Inventors: Yoshinari ISHII, Shinichi TAKEZOE, Tsuneo MARUYAMA
  • Publication number: 20190055984
    Abstract: This sintered sliding material has a composition including, by mass %, 10% to 35% of Ni, 5% to 12% of Sn, 0% to 0.9% of P, and 4.1% to 9% of C, with a remainder of Cu and inevitable impurities, wherein the sintered sliding material includes a sintered body of a plurality of Cu—Ni alloy grains containing Sn and C, the sintered sliding material has a structure in which pores are dispersedly formed in grain boundaries of the plurality of alloy grains and free graphite is distributed in the pores, and an amount of C in a metal matrix including the alloy grains is, by mass %, 0% to 0.07%.
    Type: Application
    Filed: March 2, 2017
    Publication date: February 21, 2019
    Applicant: Diamet Corporation
    Inventors: Yoshinari ISHII, Tsuneo MARUYAMA, Shinichi TAKEZOE
  • Publication number: 20190032174
    Abstract: The Cu-based sintered sliding material has a composition including, by mass %, 7% to 35% of Ni, 1% to 10% of Sn, 0.9% to 3% of P, and 0.5% to 5% of C, with a remainder of Cu and inevitable impurities, wherein the Cu-based sintered sliding material includes a sintered body including: alloy grains that contain Sn and C and contain a Cu-Ni-based alloy as a main component; grain boundary phases that contain Ni and P as main components and are dispersedly distributed in grain boundaries of the alloy grains; and free graphite that intervenes at the grain boundaries of the alloy grains, the Cu-based sintered sliding material has a structure in which pores are dispersedly formed in the grain boundaries of the alloy grains, and an amount of C in a metal matrix including the alloy grains and the grain boundary phases is, by mass %, 0.02% to 0.20%.
    Type: Application
    Filed: February 21, 2017
    Publication date: January 31, 2019
    Applicant: Diamet Corporation
    Inventor: Yoshinari ISHII
  • Publication number: 20190022758
    Abstract: A sintered sliding material with excellent corrosion resistance, heat resistance, and wear resistance is provided. The sintered sliding material has a composition made of: 36-86 mass % of Ni; 1-11 mass % of Sn; 0.05-1.0 mass % of P; 1-9 mass % of C; and the Cu balance including inevitable impurities. The sintered sliding material is made of a sintered material of a plurality of grains of alloy of Ni—Cu alloy or Cu—Ni alloy, the Ni—Cu alloy and the Cu—Ni alloy containing Sn, P, C, and Si; has a structure in which pores are dispersedly formed in grain boundaries of the plurality of the grains of alloy; and as inevitable impurities in a matrix constituted from the grains of alloy, a C content is 0.6 mass % or less and a Si content is 0.15 mass % or less.
    Type: Application
    Filed: September 21, 2018
    Publication date: January 24, 2019
    Applicant: Diamet Corporation
    Inventors: Shinichi TAKEZOE, Yoshinari ISHII
  • Publication number: 20190003527
    Abstract: An oil-retaining sintered bearing in which friction coefficient can be reduced and a sliding property as a bearing can be improved by supplying a sufficient amount of oil to a sliding surface and preventing the supplied oil from moving to an interior from the sliding surface; a sliding surface 3 supporting an outer peripheral surface of a shaft and a helical oiling surface 4 around a shaft axis of a bearing hole are adjacently formed on an inner peripheral surface of the bearing hole into which the shaft is inserted; a surface open rate at the sliding surface 3 is not larger than 10%; and a surface open rate at the oiling surface exceeds 10%.
    Type: Application
    Filed: December 20, 2016
    Publication date: January 3, 2019
    Applicants: MITSUBISHI MATERIALS CORPORATION, DIAMET CORPORATION
    Inventors: Hajime KOUNO, Yoshinari ISHII, Jyun KATOU
  • Patent number: 10041536
    Abstract: A bearing for a motor-type fuel pump comprises a Zn—P—Ni—Sn—C—Cu-based sintered alloy and has corrosion resistance to a coarse gasoline containing sulfur or an organic acid(s); superior wear resistance; and superior conformability with a shaft as a counterpart. The bearing is suitable for use in a downsized fuel pump and has a structure in which a base comprises 3 to 13% by mass of Zn, 0.1 to 0.9% by mass of P, 10 to 21% by mass of Ni, 3 to 12% by mass of Sn, 1 to 8% by mass of C and a remainder composed of Cu and inevitable impurities. The base also comprises a solid solution phase of a Zn—Ni—Sn—Cu alloy. A Sn alloy phase containing no less than 15% by mass of Sn is formed in grain boundaries of the base. Pores have a porosity of 8 to 18% and free graphite distributed therein.
    Type: Grant
    Filed: May 14, 2013
    Date of Patent: August 7, 2018
    Assignee: DIAMET CORPORATION
    Inventors: Shinichi Takezoe, Yoshinari Ishii
  • Patent number: 9849511
    Abstract: A Cu-based sintered sliding member that can be used under high-load conditions. The sliding member is age-hardened, including 5 to 30 mass % Ni, 5 to 20 mass % Sn, 0.1 to 1.2 mass % P, and the rest including Cu and unavoidable impurities. In the sliding member, an alloy phase containing higher concentrations of Ni, P and Sn than their average concentrations in the whole part of the sliding member, is allowed to be present in a grain boundary of a metallic texture, thereby achieving excellent wear resistance. Hence, without needing expensive hard particles, there can be obtained, at low cost, a Cu-based sintered sliding member usable under high-load conditions. Even more excellent wear resistance is achieved by containing 0.3 to 10 mass % of at least one solid lubricant selected from among graphite, graphite fluoride, molybdenum disulfide, tungsten disulfide, boron nitride, calcium fluoride, talc and magnesium silicate mineral powders.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: December 26, 2017
    Assignee: DIAMET CORPORATION
    Inventors: Yoshinari Ishii, Tsuneo Maruyama, Yoshiki Tamura