Patents by Inventor Yoshinari Koyama

Yoshinari Koyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11634589
    Abstract: There are provided a coating composition being possible to form a cured film which has excellent transparency and weather resistance, and especially hardness. A coating composition obtained by which a silicon-containing substance as a component (M) and a silica colloidal particle having a primary particle diameter of 2 to 80 nm as a component (S) are mixed, and then the component (M) is hydrolyzed, and the resulting aqueous solution is subsequently mixed with a colloidal particle (C) wherein a component (F) is a modified metal oxide colloidal particle (C) having a primary particle diameter of 2 to 100 nm, which includes a metal oxide colloidal particle (A) having a primary particle diameter of 2 to 60 nm as a core, whose surface is coated with a coating (B) formed of an acidic oxide colloidal particle.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: April 25, 2023
    Assignee: NISSAN CHEMICAL INDUSTRIES, LTD.
    Inventors: Yoshinari Koyama, Tomoki Furukawa, Motoko Asada
  • Publication number: 20220135814
    Abstract: A substrate is coated with a transparent coating film using a coating liquid for forming a transparent coating film including metal oxide particles and a matrix formation component. The metal oxide particles each include a metal oxide particle containing titanium oxide coated with silicon dioxide-stannic oxide complex oxide, including a titanium oxide-containing core particle; and a coating layer with which the titanium oxide-containing core particle is coated and that is made of silicon dioxide-stannic oxide complex oxide colloidal particles having a mass ratio of silicon dioxide/stannic oxide of 0.1 to 5.0, where one or more intermediate thin film layers that are made of any one of an oxide; a complex oxide of at least one element selected from Si, Al, Sn, Zr, Zn, Sb, Nb, Ta, and W; and a mixture of the oxide and the complex oxide are interposed between the core particle and the coating layer.
    Type: Application
    Filed: January 13, 2022
    Publication date: May 5, 2022
    Applicant: NISSAN CHEMICAL INDUSTRIES, LTD.
    Inventors: Yoshinari KOYAMA, Tomoki FURUKAWA, Motoko ASADA
  • Patent number: 10676643
    Abstract: A coating film-forming composition includes a hydrolysis-condensation product of a hydrolyzable silane and fine inorganic particles subjected to a special dispersion treatment, that can be formed into a highly heat-resistant, highly transparent coating film capable of exhibiting a high refractive index and having a large thickness and excellent storage stability as a coating composition; and a process for producing the coating film-forming composition.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: June 9, 2020
    Assignee: NISSAN CHEMICAL INDUSTRIES, LTD.
    Inventors: Taku Kato, Masayoshi Suzuki, Natsumi Murakami, Daiki Iijima, Tomoki Furukawa, Yoshinari Koyama
  • Patent number: 10669426
    Abstract: A dispersion that inorganic oxide microparticles may be dispersed at a high concentration in a solvent, a composition for film formation having high transparency, high refractive index and adhesion to a base layer. Inorganic oxide microparticles wherein an amphiphilic organosilicon compound having one or more selected from a polyoxyethylene group, a polyoxypropylene group, or a polyoxybutylene group as a hydrophilic group, and one or more selected from a C1-18 alkylene group or a vinylene group as a hydrophobic group bonded to a surface of modified metal oxide colloidal particles (C) having a primary particle diameter of 2 to 100 nm, the modified metal oxide colloidal particles wherein a surface of metal oxide colloidal particles (A) having a primary particle diameter of 2 to 60 nm as a nucleus is coated with a coating material (B) including metal oxide colloidal particles having a primary particle diameter of 1 to 4 nm.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: June 2, 2020
    Assignee: NISSAN CHEMICAL INDUSTRIES, LTD.
    Inventors: Natsumi Murakami, Tomoki Furukawa, Yoshinari Koyama
  • Publication number: 20190185678
    Abstract: A dispersion that inorganic oxide microparticles may be dispersed at a high concentration in a solvent, a composition for film formation having high transparency, high refractive index and adhesion to a base layer. Inorganic oxide microparticles wherein an amphiphilic organosilicon compound having one or more selected from a polyoxyethylene group, a polyoxypropylene group, or a polyoxybutylene group as a hydrophilic group, and one or more selected from a C1-18 alkylene group or a vinylene group as a hydrophobic group bonded to a surface of modified metal oxide colloidal particles (C) having a primary particle diameter of 2 to 100 nm, the modified metal oxide colloidal particles wherein a surface of metal oxide colloidal particles (A) having a primary particle diameter of 2 to 60 nm as a nucleus is coated with a coating material (B) including metal oxide colloidal particles having a primary particle diameter of 1 to 4 nm.
    Type: Application
    Filed: March 24, 2017
    Publication date: June 20, 2019
    Applicant: NISSAN CHEMICAL INDUSTRIES, LTD.
    Inventors: Natsumi MURAKAMI, Tomoki FURUKAWA, Yoshinari KOYAMA
  • Publication number: 20190144707
    Abstract: A coating film-forming composition includes a hydrolysis-condensation product of a hydrolyzable silane and fine inorganic particles subjected to a special dispersion treatment, that can be formed into a highly heat-resistant, highly transparent coating film capable of exhibiting a high refractive index and having a large thickness and excellent storage stability as a coating composition; and a process for producing the coating film-forming composition.
    Type: Application
    Filed: March 27, 2017
    Publication date: May 16, 2019
    Applicant: NISSAN CHEMICAL INDUSTRIES, LTD.
    Inventors: Taku KATO, Masayoshi SUZUKI, Natsumi MURAKAMI, Daiki IIJIMA, Tomoki FURUKAWA, Yoshinari KOYAMA
  • Publication number: 20180148579
    Abstract: There are provided a coating composition being possible to form a cured film which has excellent transparency and weather resistance, and especially hardness. A coating composition obtained by which a silicon-containing substance as a component (M) and a silica colloidal particle having a primary particle diameter of 2 to 80 nm as a component (S) are mixed, and then the component (M) is hydrolyzed, and the resulting aqueous solution is subsequently mixed with a colloidal particle (C) wherein a component (F) is a modified metal oxide colloidal particle (C) having a primary particle diameter of 2 to 100 nm, which includes a metal oxide colloidal particle (A) having a primary particle diameter of 2 to 60 nm as a core, whose surface is coated with a coating (B) formed of an acidic oxide colloidal particle.
    Type: Application
    Filed: April 27, 2016
    Publication date: May 31, 2018
    Applicant: NISSAN CHEMICAL INDUSTRIES, LTD.
    Inventors: Yoshinari KOYAMA, Tomoki FURUKAWA, Motoko ASADA
  • Patent number: 9534144
    Abstract: A film-forming composition including a triazine ring-containing hyperbranched polymer with a repeating unit structure indicated by formula (1), and inorganic micro particles is provided. This enables the provision of a film-forming composition capable of hybridizing without reducing dispersion of the inorganic micro particles in a dispersion fluid, capable of depositing a coating film with a high refractive index, and suitable for electronic device film formation. In the formula, R and R? are mutually independent and indicate a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, or an aralkyl group, and Ar indicates a divalent organic group including either an aromatic ring or a heterocyclic ring, or both.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: January 3, 2017
    Assignee: NISSAN CHEMICAL INDUSTRIES, LTD.
    Inventors: Taku Kato, Natsumi Murakami, Yoshinari Koyama, Naoya Nishimura, Masaaki Ozawa
  • Patent number: 9243165
    Abstract: A film-forming composition including a triazine ring-containing hyperbranched polymer with a repeating unit structure indicated by formula (1), and inorganic micro particles is provided. This enables the provision of a film-forming composition capable of hybridizing without reducing dispersion of the inorganic micro particles in a dispersion fluid, capable of depositing a coating film with a high refractive index, and suitable for electronic device film formation. (In the formula, R and R? are mutually independent and indicate a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, or an aralkyl group, and Ar indicates a divalent organic group including either an aromatic ring or a heterocyclic ring, or both.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: January 26, 2016
    Assignee: NISSAN CHEMICAL INDUSTRIES, LTD.
    Inventors: Taku Kato, Natsumi Murakami, Yoshinari Koyama, Naoya Nishimura, Masaaki Ozawa
  • Publication number: 20150299512
    Abstract: A film-forming composition including a triazine ring-containing hyperbranched polymer with a repeating unit structure Indicated by formula (1), and inorganic micro particles is provided. This enables the provision of a film-forming composition capable of hybridizing without reducing dispersion of the inorganic micro particles in a dispersion fluid, capable of depositing a coating film with a high refractive index, and suitable for electronic device film formation. In the formula, R and R? are mutually independent and indicate a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, or an aralkyl group, and Ar indicates a divalent organic group including either an aromatic ring or a heterocyclic ring, or both.
    Type: Application
    Filed: June 30, 2015
    Publication date: October 22, 2015
    Applicant: NISSAN CHEMICAL INDUSTRIES, LTD.
    Inventors: Taku KATO, Natsumi MURAKAMI, Yoshinari KOYAMA, Naoya NISHIMURA, Masaaki OZAWA
  • Patent number: 9150421
    Abstract: There is provided a colloidal particle of an oxide of at least one metal selected from the group consisting of Ti, Fe, Zr, Sn, Ta, Nb, Y, Mo, W, Pb, In, Bi, and Sr, which is capable of being dispersed in a hydrophobic organic solvent, and a hydrophilic organic solvent dispersed sol thereof or a sol thereof dispersed in a hydrophobic organic solvent having a solubility of water of 0.05 to 12% by mass, and further, a fine powder of a metal oxide colloidal particle capable of being redispersed in various organic solvents. A silane treated modified metal oxide colloidal particle on the surface of which an amine compound and 1 to 4 silyl group(s) per 1 nm2 of the surface area are bonded, and which is produced by coating a metal oxide colloidal particle as a core with a complex oxide colloidal particle.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: October 6, 2015
    Assignee: NISSAN CHEMICAL INDUSTRIES, LTD.
    Inventors: Yoshinari Koyama, Motoko Asada, Tomoki Furukawa, Natsumi Tsuihiji
  • Patent number: 9023147
    Abstract: There is provided provide a method for efficiently producing a rutile type titanium sol having a particle diameter based on dynamic light scattering method of 5 nm to 100 nm that is excellent in dispersibility. The method for producing a rutile type titanium oxide sol comprising: process (a): mixing metastannic acid, a titanium alkoxide, a quaternary ammonium hydroxide, oxalic acid, and water so as to contain 0.02 moles to 0.8 moles of tin atoms, 0.1 moles to 3.5 moles of the quaternary ammonium hydroxide, and 0.1 moles to 8.0 moles of the oxalic acid with respect to 1 mole of titanium atoms of the titanium alkoxide to prepare a titanium-containing aqueous solution with a concentration in terms of TiO2 of 0.1% by mass to 15% by mass; and process (b): subjecting the titanium-containing aqueous solution obtained in process (a) to a hydrothermal treatment at a temperature from 100° C. to 170° C.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: May 5, 2015
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Natsumi Murakami, Ai Miyamoto, Yoshinari Koyama
  • Publication number: 20140328889
    Abstract: There is provided provide a method for efficiently producing a rutile type titanium sol having a particle diameter based on dynamic light scattering method of 5 nm to 100 nm that is excellent in dispersibility. The method for producing a rutile type titanium oxide sol comprising: process (a): mixing metastannic acid, a titanium alkoxide, a quaternary ammonium hydroxide, oxalic acid, and water so as to contain 0.02 moles to 0.8 moles of tin atoms, 0.1 moles to 3.5 moles of the quaternary ammonium hydroxide, and 0.1 moles to 8.0 moles of the oxalic acid with respect to 1 mole of titanium atoms of the titanium alkoxide to prepare a titanium-containing aqueous solution with a concentration in terms of TiO2 of 0.1% by mass to 15% by mass; and process (b): subjecting the titanium-containing aqueous solution obtained in process (a) to a hydrothermal treatment at a temperature from 100° C. to 170° C.
    Type: Application
    Filed: November 30, 2012
    Publication date: November 6, 2014
    Inventors: Natsumi Murakami, Ai Miyamoto, Yoshinari Koyama
  • Publication number: 20140285897
    Abstract: There is provided a sol of modified metal oxide composite colloidal particles including titanium oxide having a high refractive index and excellent light resistance and weather resistance that discoloration of the colloidal particles by photoexcitation is almost completely inhibited. A titanium oxide-tin oxide-zirconium oxide-tungsten oxide composite colloidal particle having a primary particle diameter of 2 to 50 nm, and a SnO2/TiO2 molar ratio of 0.1 to 1.0, a ZrO2/TiO2 molar ratio of 0.1 to 0.4, and a WO3/TiO2 molar ratio of 0.03 to 0.15.
    Type: Application
    Filed: June 3, 2014
    Publication date: September 25, 2014
    Applicant: NISSAN CHEMICAL INDUSTRIES, LTD.
    Inventors: Yoshinari KOYAMA, Motoko ASADA
  • Publication number: 20140199554
    Abstract: A metal oxide particle containing titanium oxide coated with silicon dioxide-stannic oxide complex oxide including: a titanium oxide-containing core particle (A); and a coating layer with which the titanium oxide-containing core particle (A) is coated and that is made of silicon dioxide-stannic oxide complex oxide colloidal particles (B) having a mass ratio of silicon dioxide/stannic oxide of 0.1 to 5.0, wherein one or more intermediate thin film layers that are made of any one of an oxide; a complex oxide of at least one element selected from the group consisting of Si, Al, Sn, Zr, Zn, Sb, Nb, Ta, and W; and a mixture of the oxide and the complex oxide are interposed between the titanium oxide-containing core particle (A) and the coating layer made of the silicon dioxide-stannic oxide complex oxide colloidal particles (B).
    Type: Application
    Filed: June 1, 2012
    Publication date: July 17, 2014
    Applicant: NISSAN CHEMICAL INDUSTRIES, LTD.
    Inventors: Yoshinari Koyama, Tomoki Furukawa, Motoko Asada
  • Patent number: 8747542
    Abstract: A method for producing a rutile titanium oxide sol having a particle diameter measured by dynamic light scattering of 5 nm to 100 nm, the method comprising: a process (a): mixing a tin oxalate aqueous solution, a titanium alkoxide, oxalic acid, a quaternary ammonium hydroxide, and water, while adjusting, per mole of titanium atoms, a proportion of tin atoms to be from 0.1 mol to 0.8 mol, a proportion of the oxalic acid to be from 0.01 mol to 5 mol, and a proportion of the quaternary ammonium hydroxide to be from 0.1 mol to 3.5 mol to prepare a titanium-containing aqueous solution having a concentration in terms of TiO2 of 0.1% by mass to 15% by mass; and a process (b): performing hydrothermal treatment on the titanium-containing aqueous solution produced in the process (a) at 100° C. to 200° C.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: June 10, 2014
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Natsumi Murakami, Ai Miyamoto, Yoshinari Koyama
  • Patent number: 8697757
    Abstract: A hydrophobic organic solvent-dispersed sol of anhydrous zinc antimonate colloidal particles and a method for producing the same. The hydrophobic organic solvent-dispersed sol includes surface-modified anhydrous zinc antimonate colloidal particles dispersed in a hydrophobic organic solvent having a water solubility of 0.002 to 12% by mass. The surface-modified anhydrous zinc antimonate colloidal particles are formed by: coating outer surfaces of anhydrous zinc antimonate colloidal particles (A) serving as cores with at least one substance (B) of colloidal particles of a composite oxide containing silica and stannic oxide or silica and antimony pentoxide at a silica/stannic oxide or silica/antimony pentoxide ratio of 0.1 to 10, an oligomer of the colloidal particles, or a mixture of the colloidal particles and the oligomer to form modified anhydrous zinc antimonate colloidal particles (C); and bonding an organosilicon compound and an amine compound to surfaces of the colloidal particles (C).
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: April 15, 2014
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Yoshinari Koyama, Tomonari Shinji, Osamu Fujimoto
  • Publication number: 20130331463
    Abstract: A method for producing a rutile titanium oxide sol having a particle diameter measured by dynamic light scattering of 5 nm to 100 nm, the method comprising: a process (a): mixing a tin oxalate aqueous solution, a titanium alkoxide, oxalic acid, a quaternary ammonium hydroxide, and water, while adjusting, per mole of titanium atoms, a proportion of tin atoms to be from 0.1 mol to 0.8 mol, a proportion of the oxalic acid to be from 0.01 mol to 5 mol, and a proportion of the quaternary ammonium hydroxide to be from 0.1 mol to 3.5 mol to prepare a titanium-containing aqueous solution having a concentration in terms of TiO2 of 0.1% by mass to 15% by mass; and a process (b): performing hydrothermal treatment on the titanium-containing aqueous solution produced in the process (a) at 100° C. to 200° C.
    Type: Application
    Filed: February 15, 2012
    Publication date: December 12, 2013
    Applicant: NISSAN CHEMICAL INDUSTRIES, LTD.
    Inventors: Natsumi Murakami, Ai Miyamoto, Yoshinari Koyama
  • Publication number: 20130154043
    Abstract: A film-forming composition including a triazine ring-containing hyperbranched polymer with a repeating unit structure indicated by formula (1), and inorganic micro particles is provided. This enables the provision of a film-forming composition capable of hybridizing without reducing dispersion of the inorganic micro particles in a dispersion fluid, capable of depositing a coating film with a high refractive index, and suitable for electronic device film formation. (In the formula, R and R? are mutually independent and indicate a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, or an aralkyl group, and Ar indicates a divalent organic group including either an aromatic ring or a heterocyclic ring, or both.
    Type: Application
    Filed: August 23, 2011
    Publication date: June 20, 2013
    Applicant: NISSAN CHEMICAL INDUSTRIES, LTD.
    Inventors: Taku Kato, Natsumi Murakami, Yoshinari Koyama, Naoya Nishimura, Masaaki Ozawa
  • Publication number: 20130143035
    Abstract: There is provided a hydrophobic-organic-solvent dispersion containing colloidal particles of anhydrous zinc antimonate having high transparency which has not been attained hitherto, a coating composition containing the hydrophobic-organic-solvent dispersion and a member coated with the coating composition. A hydrophobic-organic-solvent dispersion comprising colloidal particles of anhydrous zinc antimonate having a primary particle diameter of 5 to 500 nm, which are surface-modified with azi alkylamine and a surfactant having an acid group is used. The surfactant has a carboxylic acid group, a sulfonic acid group, or a phosphoric acid group.
    Type: Application
    Filed: August 25, 2011
    Publication date: June 6, 2013
    Applicant: NISSAN CHEMICAL INDUSTRIES, LTD.
    Inventors: Osamu Fujimoto, Tomonari Shinji, Yoshinari Koyama