Patents by Inventor Yoshinori Yamamoto

Yoshinori Yamamoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8206875
    Abstract: The contraction and deformation of a seal member are inhibited. To realize this, in a separator in which the shapes of projections and recesses forming at least fluid passages are inverted from each other on the front surface and the back surface of the separator and which is provided with a manifold for supplying and discharging a fluid, the separator, when a seal member for sealing the fluid is provided along the edge side of the separator forming the contour of the manifold, a projecting section capable of functioning as a spacer between the separator and another member adjacent to the separator is provided between the seal member and the edge side.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: June 26, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshinori Yamamoto, Yuichi Yagami, Jiro Aizaki, Junichi Shirahama
  • Publication number: 20120115051
    Abstract: In at least one of flow distribution areas 35 provided on a separator 15, plurality of first projections 46 formed in a region corresponding to a first section (parted regions 32a and 32c) of a center area (including parted regions 32a through 32c) having a relatively high flow rate of a first fluid (refrigerant) are designed to have a larger diameter of a cross section than plurality of first projections 46 formed in a region corresponding to a second section (parted region 32b) of the center area having a relatively low flow rate of the first fluid. This arrangement effectively attains a substantially uniform flow rate distribution of a fluid in a fluid flow path formed on a separator, which is configured to have concavo-convex structures formed in a mutually reversed relation on two opposed sides thereof.
    Type: Application
    Filed: January 20, 2012
    Publication date: May 10, 2012
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yoshinori YAMAMOTO, Toshiyuki SUZUKI, Haruyuki AONO, Junichi SHIRAHAMA
  • Patent number: 8171750
    Abstract: Disclosed is an air conditioner coated by the coating composition to the resin-made components where due formation occurs upon the cooling operation, provides the antifouling performance against various stains, restrains enlargement of droplet, and provides an excellent long-term durability (sticking property and peeling off property) all at the same time. The air conditioner of the present embodiment forms a coating film 103 to surfaces of resin-made components and resin-made components installed to a rear flow side of the heat exchanger, includes the silica ultrafine particles 101 and the fluororesin particles 102, and provides, within the coating film 103, a silica film 104 comprising the silica ultrafine particles and the fluororesin particles 102 partially exposed from a surface of the silica film 104 in dots, and an exposed area of the silica film 104 is greater than an exposed area of the fluororesin particles 102.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: May 8, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventors: Reiji Morioka, Yoshinori Yamamoto, Yasuhiro Yoshida
  • Patent number: 8154047
    Abstract: A solid element device includes a solid element, an electric power receiving and supplying part for receiving electric power from and supplying the electric power to the solid element, and an inorganic sealing material for sealing the solid element. The inorganic sealing material includes a low melting glass selected from SiO2—Nb2O5-based, B2O3—F-based, P2O5—F-based, P2O5—ZnO-based, SiO2—B2O3—La2O3-based, and SiO2—B2O3-based low melting glasses.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: April 10, 2012
    Assignees: Toyoda Gosei Co., Ltd., Sumita Optical Glass Inc.
    Inventors: Yoshinobu Suehiro, Mitsuhiro Inoue, Hideaki Kato, Kunihiro Hadame, Ryoichi Tohmon, Satoshi Wada, Koichi Ota, Kazuya Aida, Hiroki Watanabe, Yoshinori Yamamoto, Masaaki Ohtsuka, Naruhito Sawanobori
  • Patent number: 8148040
    Abstract: In a toner at least containing a binder resin and a colorant, a value obtained by dividing a particle size D50p by a particle size D84p is 1.43 or more and 1.64 or less, wherein D50p and D84p respectively represent particle sizes at 50% and 84% of cumulative number counted from a large-size side in a cumulative number distribution. Further, in the toner, an average degree of circularity of toner particles having a volume average particle size of 1 ?m or more and 4 ?m or less is 0.940 or more and 0.960 or less. Further, in the toner, a content of toner particles having an average degree of circularity of 0.850 or less is 10% by number or less among the toner particles having a volume average particle size of 1 ?m or more and 4 ?m or less.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: April 3, 2012
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yoshinori Yamamoto, Hiroshi Onda, Saori Yamada, Yoshiaki Akazawa
  • Publication number: 20120073628
    Abstract: The present invention relates to a coating agent for a solar cell module obtained by dispersing silica fine particles (A) with an average particle diameter of 15 nm or less and low-refractive index resin particles (B) with a refractive index of 1.36 or less in an aqueous medium, in which the solid content is 5% by mass or less, and the mass ratio of the silica fine particles (A) to the low-refractive index resin particles (B) in the solid content (silica fine particles (A)/low-refractive index resin particles (B)) is more than 20/80 and less than 70/30. The coating agent for a solar cell module is capable of forming an anti-reflection film at room temperature with excellent reflectance-reducing effect, abrasion resistance and weather resistance.
    Type: Application
    Filed: July 6, 2010
    Publication date: March 29, 2012
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yasuhiro Yoshida, Yoshinori Yamamoto, Teruhiko Kumada
  • Patent number: 8144314
    Abstract: The present invention relates to a spectral measurement apparatus and measurement method utilizing Brillouin scattering, which judge the state of the temperature or strain of an optical fiber more quickly. The spectral measurement apparatus comprises a light source, an analysis section, and an anomaly judgment section. The light source outputs pumping light and probe light. The pumping light and probe light thus output are caused to enter in opposite directions to the sensing fiber. The analysis section analyzes the gain received by the probe light as a result of the Brillouin scattering. The anomaly judgment section judges the state relating to the temperature or strain of the sensing fiber on the basis of the analysis result of the analysis section. The frequency difference ? between the pumping light and probe light is set within a predetermined frequency difference setting range.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: March 27, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Yoshinori Yamamoto
  • Patent number: 8129085
    Abstract: A toner includes toner particles containing at least binder resin and colorant. The toner particles contain a large-sized toner particle group of particles and a small-sized toner particle group of particles having a volume average particle size smaller than that of the large-sized toner particle group. In the toner, a volume average particle size D50v is 4 ?m to 8 ?m at 50% in accumulated volume counted from a large particle-side in accumulated volume distribution of entire toner particles; a content of toner particles contained in a toner particle group having a volume average particle size of 7 ?m or more is 24% to 47% by volume based on the entire toner particles; and a content of toner particles contained in a toner particle group having a number average particle size of 5 ?m or less is 10% to 50% by number or less based on the entire toner particles.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: March 6, 2012
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yoshinori Yamamoto, Hiroshi Onda, Yoshiaki Akazawa
  • Patent number: 8126181
    Abstract: In addition to output the mid-high range audio sound from the speakers of the main unit, the present invention can output the low range audio sound according to the audio signal transmitted from the main unit through the DC power supply transmission cable from the sub-woofer unit of the AC adapter. Accordingly, the present invention can provide a richly expressive acoustic space without enlarging the size of the main unit.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: February 28, 2012
    Assignee: Sony Corporation
    Inventors: Yoshinori Yamamoto, Akihito Moriya, Yutaka Sato, Osamu Takahashi, Toshimasa Takahashi
  • Publication number: 20110315360
    Abstract: A coating composition having high dirt prevention properties and improved adhesiveness to hydrophobic surfaces such as those made of a plastic, and a coating method are provided. More specifically, provided is a coating composition, including: hydrophobic resin particles dispersed in an aqueous medium; hydrophilic inorganic fine particles; and an oxidizing agent containing at least one of a peroxide, a perchloric acid, a chlorate, a persulfuric acid, a superphosphoric acid, and a periodate, and also provided is a coating method including the steps of: preparing a first agent having hydrophilic inorganic fine particles and hydrophobic resin particles dispersed in an aqueous medium; preparing a second agent by adding, to the first agent, an oxidizing agent containing at least one of a peroxide, a perchloric acid, a chlorate, a persulfuric acid, a superphosphoric acid, and a periodate; applying the second agent onto a member to be coated; and drying the second agent on the member to be coated.
    Type: Application
    Filed: March 10, 2010
    Publication date: December 29, 2011
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yoshinori Yamamoto, Yasuhiro Yoshida, Teruhiko Kumada, Reiji Morioka
  • Patent number: 8077299
    Abstract: The present invention relates to a measuring method, etc., comprising a structure for accurately measuring optical characteristics such as PMD of an optical fiber. The measuring method is a technique for measuring polarization characteristic distributions along the longitudinal direction of the optical fiber as a measuring object by using BOCDA, and by propagating probe light and pumping light opposite in the optical fiber, BGS is generated at a plurality of respective measurement positions. Then, based on Brillouin gain fluctuations at the respective measurement positions, polarization characteristic distributions are calculated.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: December 13, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yoshinori Yamamoto, Eisuke Sasaoka
  • Publication number: 20110300370
    Abstract: Provided is a coating method, including the steps of: applying a coating composition including inorganic fine particles and fluororesin particles in an aqueous medium onto a material to be coated; drying the coating composition on the material to be coated to remove the aqueous medium, thereby forming a porous film formed of the inorganic fine particles, the porous film having the fluororesin particles therein and having voids; and applying one or more water-soluble substances selected from the group consisting of a water-soluble surfactant and a water-soluble polymer onto the porous film, thereby filling the one or more water-soluble substances in the voids of the porous film. According to the coating method, there can be formed a coated article having a coating film which exhibits the excellent effect for inhibiting the attachment of oil stains for a long period and from which, even if oil stains are attached, the oil stains can be easily removed by wiping or washing with water.
    Type: Application
    Filed: February 8, 2010
    Publication date: December 8, 2011
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yasuhiro Yoshida, Yoshinori Yamamoto, Teruhiko Kumada, Reiji Morioka
  • Publication number: 20110211788
    Abstract: The invention relates to an optical fiber employable in an optical communication system using Raman amplification and adapted to improve OSNR and suppress bending loss at the same time, and the like. The optical fiber is a silica-based optical fiber having a depressed refractive index profile constituted by at least a core, an inner cladding having a low refractive index, and an outer cladding, an effective area Aeff of 110 ?m2 or more at the wavelength of 1550 nm, and a fiber cutoff wavelength ?C of 1.3 ?m or more but 1.53 ?m or less. The depressed refractive index profile is designed such that the ratio Ra(=2b/2a) of the diameter of the inner cladding to the diameter of the core is 2.5 or more but 3.5 or less and that the relative refractive index difference ?? of the inner cladding with respect to the outer cladding is at least the relative refractive index difference ??min where the bending loss at the wavelength for use is minimized but not exceeding (??min+0.06) %.
    Type: Application
    Filed: February 23, 2011
    Publication date: September 1, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yoshinori Yamamoto, Masaaki Hirano
  • Patent number: 7997792
    Abstract: The present invention relates to an optical fiber temperature sensor capable of reducing an error in a temperature measurement. The sensor comprises an optical fiber, an optical frequency difference adjusting section, a light source system, a spectrum measuring section, a temperature calculating section, and a correcting section. The light source system outputs, into different ends of the optical fiber, probe light and pumping light of which each center frequency is set corresponding to an instruction from the optical frequency difference indicating section respectively. The temperature calculating section calculates a temperature of an object based on BGS in a first domain measured by the spectrum measuring section. On the other hand, the correcting section outputs a correction instruction to the light source system so that BGS center frequency of a second domain may be in agreement with a reference value thereof.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: August 16, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Eisuke Sasaoka, Yoshinori Yamamoto
  • Patent number: 7995198
    Abstract: The present invention relates to an optical fiber characteristic distribution sensor comprising a structure to effectively reduce the measurement errors of position in the temperature distribution measurement etc. The sensor comprises an optical fiber section, part of which is installed in an object to be measured and to which probe light and pumping light are inputted in opposite directions. The optical fiber section includes a marker portion where data relating to the shape of a BGS in the maker has been preliminarily measured in a state where the optical fiber section is installed in a normal state. At the time of calculating the characteristic distribution in the longitudinal direction of the optical fiber section while measuring the data relating to the BGS shape, the errors of the calculated gain occurrence position are corrected, for example, by shifting the scanning range of phase difference between the probe light and the pumping light.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: August 9, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Eisuke Sasaoka, Yoshinori Yamamoto
  • Patent number: 7995874
    Abstract: The present invention relates to an optical fiber distribution type detecting method and the like equipped with a structure for enabling efficient measurement of a temperature distribution or strain distribution. This method regulates a modulation frequency and modulation index for probe light and pumping light opposingly incident on an object from a light source and a phase difference between the probe light and pumping light, thereby successively setting the length and location of search domains in a region to be measured. In particular, a detection process is executed while resetting the search domain length shorter at a predetermined interval of time or when an abnormality is detected. Thus partly changing the distance resolution for a specific region in the course of the detection process enables efficient measurement operations in a short time.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: August 9, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Eisuke Sasaoka, Yoshinori Yamamoto
  • Publication number: 20110160032
    Abstract: An object of the present invention is to provide optical glass having improved glass-devitrification resistance and moldability without causing reduction in refractive index, and also provide an optical element using the optical glass as a raw material. Specifically, the present invention provides an optical glass containing components of, by mol %: B2O3: over 60% through 75%; Bi2O3: 24% to 39%; La2O3: 7% or lower; Gd2O3: 7% or lower; and ZrO2: 7% or lower.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 30, 2011
    Inventor: Yoshinori Yamamoto
  • Patent number: 7943540
    Abstract: An optical glass for precision molding having a high refractive index (nd) and a low yield temperature (At). The optical glass comprises, as glass components in wt %, 64 to 83% of Bi2O3; 4 to 17% of B2O3; 0 to 12% of GeO2 (wherein the total of B2O3 and GeO2 is 10 to 20%); 0 to 7% of La2O3; 0 to 7% of Gd2O3 (wherein the total of La2O3 and Gd2O3 is 1 to 13%); 0 to 4% of ZrO2; 0 to 5% of Ta2O5; 0 to 15% of ZnO; 0 to 2% of Sb2O3; and 0 to 1% of In2O3. The optical glass has optical constants, that is, a refractive index (nd) of 2.05 to 2.25 and an Abbe number (vd) of 15 to 22, and a yield temperature (At) of 510° C. or less.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: May 17, 2011
    Assignee: Sumita Optical Glass, Inc.
    Inventor: Yoshinori Yamamoto
  • Publication number: 20110101399
    Abstract: A solid element device includes a solid element, an electric power receiving and supplying part for receiving electric power from and supplying the electric power to the solid element, and an inorganic sealing material for sealing the solid element. The inorganic sealing material includes a low melting glass selected from SiO2—Nb2O5-based, B2O3—F-based, P2O5—F-based, P2O5—ZnO-based, SiO2—B2O3—La2O3-based, and SiO2—B2O3-based low melting glasses.
    Type: Application
    Filed: October 7, 2010
    Publication date: May 5, 2011
    Applicants: TOYODA GOSEI CO., LTD., SUMITA OPTICAL GLASS INC.
    Inventors: Yoshinobu Suehiro, Mitsuhiro Inoue, Hideaki Kato, Kunihiro Hadame, Ryoichi Tohmon, Satoshi Wada, Koichi Ota, Kazuya Aida, Hiroki Watanabe, Yoshinori Yamamoto, Masaaki Ohtsuka, Naruhito Sawanobori
  • Patent number: 7935468
    Abstract: There is provided a toner which is excellent in temporal stability and environmental stability of charges and which is capable of forming images that contains almost no background fog and has high density even in a long-term use and in use at a high-temperature and high-humid circumstance, and furthermore the toner which is not scattered inside an image forming apparatus and thus causes no contamination inside the apparatus, and there is further provided a method of manufacturing the above toner. An organic boron compound is contained as a charge control agent, a surface CCA concentration per specific surface area of toner falls in a range from 2.1×10?6 g/cm2 to 5.5×10?6 g/cm2, and a surface CCA concentration is 1.8×10?3 g/g or more.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: May 3, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yoshinori Yamamoto, Satoshi Ogawa, Masao Suzuki, Yoshiaki Akazawa