Patents by Inventor Yoshitaka Uemura

Yoshitaka Uemura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11867085
    Abstract: A turbine blade is provided with an airfoil portion having a leading edge, a trailing edge, and a pressure surface and a suction surface which extend between the leading edge and the trailing edge, the airfoil portion internally forming a cooling passage. The cooling passage includes: a first cooling passage located closer to the pressure surface than the suction surface; and a second cooling passage located closer to the suction surface than the pressure surface. The first cooling passage and the second cooling passage are separated by a partition member disposed in the airfoil portion. At least one communication space connecting the first cooling passage and the second cooling passage is formed in the partition member.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: January 9, 2024
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Satoshi Mizukami, Masamitsu Kuwabara, Satoshi Hada, Saki Matsuo, Yoshitaka Uemura, Ryozo Tamura, Yasumasa Kunisada
  • Patent number: 11713683
    Abstract: A turbine blade including an airfoil portion having a leading edge, a trailing edge, and a pressure surface and a suction surface extending between the leading edge and the trailing edge. The airfoil portion internally forming a cooling passage, which includes first and second cooling passages, and a plurality of outflow passages each having one end which opens to a merging portion formed by connecting an end portion of the first cooling passage on a side of the trailing edge and an end portion of the second cooling passage on the side of the trailing edge, and another end which opens to the trailing edge. The first cooling passage and the second cooling passage are divided by a partition member disposed in the airfoil portion. The cooling passage includes pressure side pin fins in the first cooling passage, and suction side pin fins in the second cooling passage.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: August 1, 2023
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Satoshi Mizukami, Masamitsu Kuwabara, Satoshi Hada, Saki Matsuo, Yoshitaka Uemura, Ryozo Tamura, Yasumasa Kunisada
  • Publication number: 20220412220
    Abstract: A turbine blade is provided with an airfoil portion having a leading edge, a trailing edge, and a pressure surface and a suction surface which extend between the leading edge and the trailing edge, the airfoil portion internally forming a cooling passage. The cooling passage includes: a first cooling passage located closer to the pressure surface than the suction surface; and a second cooling passage located closer to the suction surface than the pressure surface. The first cooling passage and the second cooling passage are separated by a partition member disposed in the airfoil portion. At least one communication space connecting the first cooling passage and the second cooling passage is formed in the partition member.
    Type: Application
    Filed: March 23, 2021
    Publication date: December 29, 2022
    Inventors: Satoshi MIZUKAMI, Masamitsu KUWABARA, Satoshi HADA, Saki MATSUO, Yoshitaka UEMURA, Ryozo TAMURA, Yasumasa KUNISADA
  • Publication number: 20220403744
    Abstract: A turbine blade including an airfoil portion having a leading edge, a trailing edge, and a pressure surface and a suction surface extending between the leading edge and the trailing edge. The airfoil portion internally forming a cooling passage, which includes first and second cooling passages, and a plurality of outflow passages each having one end which opens to a merging portion formed by connecting an end portion of the first cooling passage on a side of the trailing edge and an end portion of the second cooling passage on the side of the trailing edge, and another end which opens to the trailing edge. The first cooling passage and the second cooling passage are divided by a partition member disposed in the airfoil portion. The cooling passage includes pressure side pin fins in the first cooling passage, and suction side pin fins in the second cooling passage.
    Type: Application
    Filed: March 23, 2021
    Publication date: December 22, 2022
    Inventors: Satoshi MIZUKAMI, Masamitsu KUWABARA, Satoshi HADA, Saki MATSUO, Yoshitaka UEMURA, Ryozo TAMURA, Yasumasa KUNISADA
  • Patent number: 11325189
    Abstract: There is provided an additive manufactured (AM) article formed of a Co based alloy having a composition comprising: in mass %, 0.08-0.25% C; 0.1% or less B; 10-30% Cr; 30% or less in total of Fe and Ni, the Fe being 5% or less; 5-12% in total of W and/or Mo; 0.5-2% in total of Ti, Zr, Nb and Ta; 0.5% or less Si; 0.5% or less Mn; 0.003-0.04% N; and the balance being Co and impurities. The AM article comprises crystal grains with an average size of 10-100 ?m. In the crystal grains, segregation cells with an average size of 0.15-1.5 ?m are formed, in which components constituting an MC type carbide phase comprising the Ti, Zr, Nb and/or Ta are segregated in boundary regions of the cells, and/or grains of the MC type carbide phase are precipitated at an average intergrain distance of 0.15-1.5 ?m.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: May 10, 2022
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Shinya Imano, Yuting Wang, Shigenobu Eguchi, Yoshitaka Uemura, Norihiko Motoyama, Takanao Komaki
  • Patent number: 10857595
    Abstract: There is provided an additive manufactured (AM) article formed of a Co based alloy having a composition comprising: in mass %, 0.08-0.25% C; 0.1% or less B; 10-30% Cr; 30% or less in total of Fe and Ni, the Fe being 5% or less; 5-12% in total of W and/or Mo; 0.5-2% in total of Ti, Zr, Nb and Ta; 0.5% or less Si; 0.5% or less Mn; 0.003-0.04% N; and the balance being Co and impurities. The AM article comprises crystal grains with an average size of 10-100 ?m. In the crystal grains, segregation cells with an average size of 0.15-1.5 ?m are formed, in which components constituting an MC type carbide phase comprising the Ti, Zr, Nb and/or Ta are segregated in boundary regions of the cells, and/or grains of the MC type carbide phase are precipitated at an average intergrain distance of 0.15-1.5 ?m.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: December 8, 2020
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Shinya Imano, Yuting Wang, Shigenobu Eguchi, Yoshitaka Uemura, Norihiko Motoyama, Takanao Komaki
  • Patent number: 10632535
    Abstract: There is provided an additive manufactured (AM) article formed of a Co based alloy having a composition comprising: in mass %, 0.08-0.25% C; 0.1% or less B; 10-30% Cr; 30% or less in total of Fe and Ni, the Fe being 5% or less; 5-12% in total of W and/or Mo; 0.5-2% in total of Ti, Zr, Nb and Ta; 0.5% or less Si; 0.5% or less Mn; 0.003-0.04% N; and the balance being Co and impurities. The AM article comprises crystal grains with an average size of 10-100 ?m. In the crystal grains, segregation cells with an average size of 0.15-1.5 ?m are formed, in which components constituting an MC type carbide phase comprising the Ti, Zr, Nb and/or Ta are segregated in boundary regions of the cells, and/or grains of the MC type carbide phase are precipitated at an average intergrain distance of 0.15-1.5 ?m.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: April 28, 2020
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Shinya Imano, Yuting Wang, Shigenobu Eguchi, Yoshitaka Uemura, Norihiko Motoyama, Takanao Komaki
  • Publication number: 20200016659
    Abstract: There is provided an additive manufactured (AM) article formed of a Co based alloy having a composition comprising: in mass %, 0.08-0.25% C; 0.1% or less B; 10-30% Cr; 30% or less in total of Fe and Ni, the Fe being 5% or less; 5-12% in total of W and/or Mo; 0.5-2% in total of Ti, Zr, Nb and Ta; 0.5% or less Si; 0.5% or less Mn; 0.003-0.04% N; and the balance being Co and impurities. The AM article comprises crystal grains with an average size of 10-100 ?m. In the crystal grains, segregation cells with an average size of 0.15-1.5 ?m are formed, in which components constituting an MC type carbide phase comprising the Ti, Zr, Nb and/or Ta are segregated in boundary regions of the cells, and/or grains of the MC type carbide phase are precipitated at an average intergrain distance of 0.15-1.5 ?m.
    Type: Application
    Filed: September 25, 2019
    Publication date: January 16, 2020
    Applicant: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Shinya IMANO, Yuting WANG, Shigenobu EGUCHI, Yoshitaka UEMURA, Norihiko MOTOYAMA, Takanao KOMAKI
  • Publication number: 20200016658
    Abstract: There is provided an additive manufactured (AM) article formed of a Co based alloy having a composition comprising: in mass %, 0.08-0.25% C; 0.1% or less B; 10-30% Cr; 30% or less in total of Fe and Ni, the Fe being 5% or less; 5-12% in total of W and/or Mo; 0.5-2% in total of Ti, Zr, Nb and Ta; 0.5% or less Si; 0.5% or less Mn; 0.003-0.04% N; and the balance being Co and impurities. The AM article comprises crystal grains with an average size of 10-100 ?m. In the crystal grains, segregation cells with an average size of 0.15-1.5 ?m are formed, in which components constituting an MC type carbide phase comprising the Ti, Zr, Nb and/or Ta are segregated in boundary regions of the cells, and/or grains of the MC type carbide phase are precipitated at an average intergrain distance of 0.15-1.5 ?m.
    Type: Application
    Filed: September 25, 2019
    Publication date: January 16, 2020
    Applicant: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Shinya IMANO, Yuting WANG, Shigenobu EGUCHI, Yoshitaka UEMURA, Norihiko MOTOYAMA, Takanao KOMAKI
  • Patent number: 10259034
    Abstract: A slurry for forming a mold includes a silica sol as a dispersion medium and niobia-stabilized zirconia dispersed in the silica sol.
    Type: Grant
    Filed: March 4, 2015
    Date of Patent: April 16, 2019
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hidetaka Oguma, Kazutaka Mori, Ichiro Nagano, Masato Shida, Ikuo Okada, Ryota Okimoto, Yoshitaka Uemura
  • Patent number: 10245636
    Abstract: A method for manufacturing a core (S1) includes: a coating step (S20) of adding an organic binder to a large particle group composed of silica-containing large particles, and coating surfaces of the large particles with the organic binder; a mixing step (S30) of mixing, after the coating step (S20), the large particle group and a small particle group composed of silica-containing small particles having a smaller particle size than the large particles; a laminate shaping step (S40) of forming, after the mixing step (S30), a molding in which a mixture of the large and small particle groups is used; and a sintering step (S60) of sintering the molding after the laminate shaping step (S40).
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: April 2, 2019
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Kosuke Fujiwara, Sachio Shimohata, Kazutaka Mori, Hidetaka Oguma, Ikuo Okada, Yoshitaka Uemura
  • Publication number: 20190076926
    Abstract: There is provided an additive manufactured (AM) article formed of a Co based alloy having a composition comprising: in mass %, 0.08-0.25% C; 0.1% or less B; 10-30% Cr; 30% or less in total of Fe and Ni, the Fe being 5% or less; 5-12% in total of W and/or Mo; 0.5-2% in total of Ti, Zr, Nb and Ta; 0.5% or less Si; 0.5% or less Mn; 0.003-0.04% N; and the balance being Co and impurities. The AM article comprises crystal grains with an average size of 10-100 ?m. In the crystal grains, segregation cells with an average size of 0.15-1.5 ?m are formed, in which components constituting an MC type carbide phase comprising the Ti, Zr, Nb and/or Ta are segregated in boundary regions of the cells, and/or grains of the MC type carbide phase are precipitated at an average intergrain distance of 0.15-1.5 ?m.
    Type: Application
    Filed: September 7, 2018
    Publication date: March 14, 2019
    Applicant: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Shinya IMANO, Yuting WANG, Shigenobu EGUCHI, Yoshitaka UEMURA, Norihiko MOTOYAMA, Takanao KOMAKI
  • Patent number: 10208364
    Abstract: A Ni-based alloy comprises nitrides, of which an estimated largest size is an area-equivalent diameter of 12 ?m to 25 ?m, the estimated largest size of the nitrides being determined by calculating an area-equivalent diameter D which is defined as D=A1/2 in relation to an area A of a nitride with a largest size among nitrides present in a measurement field of view area S0 of an observation of the Ni-based alloy, repeatedly performing this operation for n times corresponding to a measurement field of view number n to acquire n pieces of data of the area-equivalent diameter D, arranging the pieces of data of area-equivalent diameter D in ascending order into D1, D2, . . .
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: February 19, 2019
    Assignee: Hitachi Metals, Ltd.
    Inventors: Ikuo Okada, Masaki Taneike, Hidetaka Oguma, Yoshitaka Uemura, Daisuke Yoshida, Yoshiyuki Inoue, Masato Itoh, Kenichi Yaguchi, Tadashi Fukuda, Takanori Matsui
  • Patent number: 10150707
    Abstract: A method for producing a thermal spray powder includes: a preparing step of preparing a powder mixture containing a first particle made from zirconia-based ceramic containing a first additive agent and a second particle made from zirconia-based ceramic containing a second additive agent, the powder mixture having a 10% cumulative particle diameter of more than 0 ?m and not more than 10 ?m; and a secondary-particle producing step of producing a plurality of secondary particles each of which includes the first particle and the second particle sintered with each other.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: December 11, 2018
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Taiji Torigoe, Ichiro Nagano, Yoshifumi Okajima, Ikuo Okada, Masahiko Mega, Yoshitaka Uemura, Naotoshi Okaya, Shusuke Sakuma
  • Publication number: 20180236503
    Abstract: To provide a turbine blade maintenance method, in which a fouling cleaning process (scale cleaning process) is performed before applying heat treatment for removing residual stress to a turbine rotor blade. In the fouling cleaning process, ultrasonic cleaning treatment in which the turbine rotor blade is immersed in a water basin and ultrasonic waves are conducted into the water basin to clean the turbine rotor blade (Steps S22 and S25), and pressurized-water cleaning treatment in which after the ultrasonic cleaning treatment, pressurized water is sprayed into internal cooling flow channels (Steps S23 and S26) are performed at least once.
    Type: Application
    Filed: December 13, 2016
    Publication date: August 23, 2018
    Inventors: Yoshitaka UEMURA, Yoshiyuki INOUE
  • Patent number: 9989450
    Abstract: An erosion test apparatus includes a combustor configured to obtain a combustion gas by mixing and combusting compressed air and a fuel, and an erodent supply unit configured to supply an erodent to the combustion gas. The erosion test apparatus further includes an accommodation support unit configured to accommodate and support a test piece having a front surface coated through thermal barrier coating, and an accelerator configured to accelerate the combustion gas including the erodent to collide with the test piece.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: June 5, 2018
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Daisuke Kudo, Taiji Torigoe, Junichiro Masada, Koji Takahashi, Yoshitaka Uemura, Yoshifumi Okajima, Naotoshi Okaya, Eisaku Ito, Masahiko Mega, Shigenari Horie, Shuji Tanigawa, Yasuhiko Tsuru, Keizo Tsukagoshi, Masamitsu Kuwabara
  • Publication number: 20180030584
    Abstract: A thermal barrier coating (100) includes a heat-resistant alloy substrate which is used in a turbine member and a ceramic layer (300) which is formed on the heat-resistant alloy substrate and in which vertical cracks (C) extending in a thickness direction are dispersed in a surface direction and a plurality of pores (P) are included on the inside. Thermal spray particles composed of YbSZ having a particle-size distribution in which a 50% particle diameter in a cumulative particle-size distribution is 40 ?m to 100 ?m are thermally sprayed at a thermal spray distance of 80 mm or less, the vertical cracks (C) are dispersed at a pitch of 0.5 cracks/mm to 40 cracks/mm in the surface direction, and the ceramic layer (300) of which a porosity attributable to the vertical cracks (C) and the pores (P) combined is 4% to 15% is formed.
    Type: Application
    Filed: February 5, 2016
    Publication date: February 1, 2018
    Inventors: Yoshiyuki INOUE, Taiji TORIGOE, Daisuke KUDO, Masamitsu KUWABARA, Kei OSAWA, Yoshitaka UEMURA, Naotoshi OKAYA
  • Publication number: 20180023178
    Abstract: The present invention provides a production method for thermal spray particles forming a ceramic layer in which vertical cracks extending in a thickness direction are dispersed in a surface direction and which includes a plurality of pores inside. The production method for thermal spray particles includes adjusting a solid content concentration of slurry (13) to 75 wt % to 85 wt %, supplying the slurry (13) to a disk-shaped atomizer (12) of a spray drying device (10), setting a protrusion speed at which the slurry (13) protrudes from the atomizer (12) to 60 m/second to 90 m/second. and performing a heat treatment on thermal spray particle bodies (22) formed by drying the slurry (13) to produce thermal spray particles composed of YbSZ in which a 50% particle diameter in a cumulative particle-size distribution is 40 ?m to 100 ?m.
    Type: Application
    Filed: February 5, 2016
    Publication date: January 25, 2018
    Inventors: Yoshiyuki INOUE, Taiji TORIGOE, Daisuke KUDO, Masamitsu KUWABARA, Kei OSAWA, Yoshitaka UEMURA, Naotoshi OKAYA
  • Patent number: 9822437
    Abstract: A process for producing a thermal barrier coating having an excellent thermal barrier effect and superior durability to thermal cycling. Also, a turbine member having a thermal barrier coating that has been formed using the production process, and a gas turbine. The process for producing a thermal barrier coating includes: forming a metal bonding layer (12) on a heat-resistant alloy substrate (11), and forming a ceramic layer (13) on the metal bonding layer (12) by thermal spraying of thermal spray particles having a particle size distribution in which the 10% cumulative particle size is not less than 30 ?m and not more than 100 ?m.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: November 21, 2017
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Taiji Torigoe, Ichiro Nagano, Ikuo Okada, Keizo Tsukagoshi, Kazutaka Mori, Yoshiaki Inoue, Yoshitaka Uemura, Yoshifumi Okajima, Hideaki Kaneko, Masahiko Mega
  • Patent number: 9816161
    Abstract: Provided is a Ni-based single crystal superalloy containing 6% by mass or more and 12% by mass or less of Cr, 0.4% by mass or more and 3.0% by mass or less of Mo, 6% by mass or more and 10% by mass or less of W, 4.0% by mass or more and 6.5% by mass or less of Al, 0% by mass or more and 1% by mass or less of Nb, 8% by mass or more and 12% by mass or less of Ta, 0% by mass or more and 0.15% by mass or less of Hf, 0.01% by mass or more and 0.2% by mass or less of Si, and 0% by mass or more and 0.04% by mass or less of Zr, and optionally containing at least one element selected from B, C, Y, La, Ce, and V, with a balance being Ni and inevitable impurities.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: November 14, 2017
    Assignees: MITSUBISHI HITACHI POWER SYSTEMS, LTD., NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Kyoko Kawagishi, Hiroshi Harada, Tadaharu Yokokawa, Yutaka Koizumi, Toshiharu Kobayashi, Masao Sakamoto, Michinari Yuyama, Masaki Taneike, Ikuo Okada, Sachio Shimohata, Hidetaka Oguma, Ryota Okimoto, Keizo Tsukagoshi, Yoshitaka Uemura, Junichiro Masada, Shunsuke Torii