Patents by Inventor Yoshitaka Uemura

Yoshitaka Uemura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170260101
    Abstract: A method for producing a thermal spray powder includes: a preparing step of preparing a powder mixture containing a first particle made from zirconia-based ceramic containing a first additive agent and a second particle made from zirconia-based ceramic containing a second additive agent, the powder mixture having a 10% cumulative particle diameter of more than 0 ?m and not more than 10 ?m; and a secondary-particle producing step of producing a plurality of secondary particles each of which includes the first particle and the second particle sintered with each other.
    Type: Application
    Filed: August 25, 2015
    Publication date: September 14, 2017
    Applicant: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Taiji TORIGOE, Ichiro NAGANO, Yoshifumi OKAJIMA, Ikuo OKADA, Masahiko MEGA, Yoshitaka UEMURA, Naotoshi OKAYA, Shusuke SAKUMA
  • Publication number: 20170226620
    Abstract: A heat shielding coating (11) includes a bond coat layer (12) as a metal coupling layer laminated on a base material (10), and a top coat layer (13) which is laminated on the bond coat layer (12) and includes zirconia-based ceramic, in which the top coat layer (13) has a porosity of 9% or less.
    Type: Application
    Filed: November 10, 2015
    Publication date: August 10, 2017
    Applicant: Mitsubishi Hitachi Power Systems, Ltd.
    Inventors: Daisuke KUDO, Taiji TORIGOE, Junichiro MASADA, Koji TAKAHASHI, Yoshitaka UEMURA, Yoshifumi OKAJIMA, Naotoshi OKAYA, Eisaku ITO, Masahiko MEGA, Shigenari HORIE, Shuji TANIGAWA, Yasuhiko TSURU, Keizo TSUKAGOSHI, Masamitsu KUWABARA
  • Publication number: 20170028461
    Abstract: A method for manufacturing a core (S1) includes: a coating step (S20) of adding an organic binder to a large particle group composed of silica-containing large particles, and coating surfaces of the large particles with the organic binder; a mixing step (S30) of mixing, after the coating step (S20), the large particle group and a small particle group composed of silica-containing small particles having a smaller particle size than the large particles; a laminate shaping step (S40) of forming, after the mixing step (S30), a molding using to a laminate shaping method in which a mixture of the large and small particle groups is used; and a sintering step (S60) of sintering the molding after the laminate shaping step (S40).
    Type: Application
    Filed: March 5, 2015
    Publication date: February 2, 2017
    Inventors: Kosuke FUJIWARA, Sachio SHIMOHATA, Kazutaka MORI, Hidetaka OGUMA, Ikuo OKADA, Yoshitaka UEMURA
  • Publication number: 20160354836
    Abstract: A slurry for forming a mold includes a silica sol as a dispersion medium and niobia-stabilized zirconia dispersed in the silica sol.
    Type: Application
    Filed: March 4, 2015
    Publication date: December 8, 2016
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hidetaka OGUMA, Kazutaka MORI, Ichiro NAGANO, Masato SHIDA, Ikuo OKADA, Ryota OKIMOTO, Yoshitaka UEMURA
  • Publication number: 20160177423
    Abstract: A Ni-based alloy comprises nitrides, of which an estimated largest size is an area-equivalent diameter of 12 ?m to 25 ?m, the estimated largest size of the nitrides being determined by calculating an area-equivalent diameter D which is defined as D=A1/2 in relation to an area A of a nitride with a largest size among nitrides present in a measurement field of view area S0 of an observation of the Ni-based alloy, repeatedly performing this operation for n times corresponding to a measurement field of view number n to acquire n pieces of data of the area-equivalent diameter D, arranging the pieces of data of area-equivalent diameter D in ascending order into D1, D2, . . .
    Type: Application
    Filed: August 6, 2014
    Publication date: June 23, 2016
    Inventors: Ikuo OKADA, Masaki TANEIKE, Hidetaka OGUMA, Yoshitaka UEMURA, Daisuke YOSHIDA, Yoshiyuki INOUE, Masato ITOH, Kenichi YAGUCHI, Tadashi FUKUDA, Takanori MATSUI
  • Publication number: 20160131570
    Abstract: An erosion test apparatus includes a combustor configured to obtain a combustion gas by mixing and combusting compressed air and a fuel, and an erodent supply unit configured to supply an erodent to the combustion gas. The erosion test apparatus further includes an accommodation support unit configured to accommodate and support a test piece having a front surface coated through thermal barrier coating, and an accelerator configured to accelerate the combustion gas including the erodent to collide with the test piece.
    Type: Application
    Filed: November 5, 2015
    Publication date: May 12, 2016
    Inventors: Daisuke KUDO, Taiji TORIGOE, Junichiro MASADA, Koji TAKAHASHI, Yoshitaka UEMURA, Yoshifumi OKAJIMA, Naotoshi OKAYA, Eisaku ITO, Masahiko MEGA, Shigenari HORIE, Shuji TANIGAWA, Yasuhiko TSURU, Keizo TSUKAGOSHI, Masamitsu KUWABARA
  • Publication number: 20150197833
    Abstract: Provided is a Ni-based single crystal superalloy containing 6% by mass or more and 12% by mass or less of Cr, 0.4% by mass or more and 3.0% by mass or less of Mo, 6% by mass or more and 10% by mass or less of W, 4.0% by mass or more and 6.5% by mass or less of Al, 0% by mass or more and 1% by mass or less of Nb, 8% by mass or more and 12% by mass or less of Ta, 0% by mass or more and 0.15% by mass or less of Hf, 0.01% by mass or more and 0.2% by mass or less of Si, and 0% by mass or more and 0.04% by mass or less of Zr, and optionally containing at least one element selected from B, C, Y, La, Ce, and V, with a balance being Ni and inevitable impurities.
    Type: Application
    Filed: July 30, 2013
    Publication date: July 16, 2015
    Inventors: Kyoko Kawagishi, Hiroshi Harada, Tadaharu Yokokawa, Yutaka Koizumi, Toshiharu Kobayashi, Masao Sakamoto, Michinari Yuyama, Masaki Taneike, Ikuo Okada, Sachio Shimohata, Hidetaka Oguma, Ryota Okimoto, Keizo Tsukagoshi, Yoshitaka Uemura, Junichiro Masada, Shunsuke Torii
  • Patent number: 8876978
    Abstract: An object is to reduce changes in mechanical properties of a gas turbine blade base material during repair or regeneration of a gas turbine blade. For this purpose, a gas turbine blade after being operated is washed by being immersed into a strong alkaline washing solution, and the gas turbine blade after being washed with the strong alkaline washing solution is washed with water. The gas turbine blade after being washed with water is then washed by being immersed into a weak acid washing solution, and the gas turbine blade after being washed with the weak acid washing solution is subjected to heat treatment. The gas turbine blade after the heat treatment is then immersed into a strong acid washing solution, whereby the coating formed on the surface of the gas turbine blade is removed.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: November 4, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Tetsuji Kawakami, Ikumasa Koshiro, Rumi Haruna, Yoshitaka Uemura
  • Publication number: 20130202912
    Abstract: A process for producing a thermal barrier coating having an excellent thermal barrier effect and superior durability to thermal cycling. Also, a turbine member having a thermal barrier coating that has been formed using the production process, and a gas turbine. The process for producing a thermal barrier coating includes: forming a metal bonding layer (12) on a heat-resistant alloy substrate (11), and forming a ceramic layer (13) on the metal bonding layer (12) by thermal spraying of thermal spray particles having a particle size distribution in which the 10% cumulative particle size is not less than 30 ?m and not more than 100 ?m.
    Type: Application
    Filed: August 30, 2010
    Publication date: August 8, 2013
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Taiji Torigoe, Ichiro Nagano, Ikuo Okada, Keizo Tsukagoshi, Kazutaka Mori, Yoshiaki Inoue, Yoshitaka Uemura, Yoshifumi Okajima, Hideaki Kaneko, Masahiko Mega
  • Patent number: 8211360
    Abstract: A Ni-based heat resistant alloy for a gas turbine combustor, comprising a composition containing, in mass %, Cr: 14.0 to 21.5%, Co: 6.5 to 14.5%, Mo: 6.5 to 10.0%, W: 1.5 to 3.5%, Al: 1.2 to 2.4%, Ti: 1.1 to 2.1%; Fe: 7.0% or less, B: 0.001 to 0.020%, C: 0.03 to 0.15%, and a balance consisting of Ni and unavoidable impurities, wherein a content of S and P contained in the unavoidable impurities is controlled to be, in mass %, S: 0.015% or less, and P: 0.015% or less, wherein the alloy has a texture in which M6C type carbide and MC type carbide are uniformly dispersed in ? phase matrix.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: July 3, 2012
    Assignees: Mitsubishi Materials Corporation, Mitsubishi Heavy Industries, Ltd
    Inventors: Takanori Matsui, Komei Kato, Takuya Murai, Yoshitaka Uemura, Daisuke Yoshida, Ikuo Okada
  • Patent number: 8187531
    Abstract: A wire for welding Ni-based heat resistant alloy, comprising: a composition containing, in mass %, Cr: 14.0 to 21.5%, Co: 6.5 to 14.5%, Mo: 6.5 to 10.0%, W: 1.5 to 3.5%, Al: 1.2 to 2.4%, Ti: 1.1 to 2.1%; Fe: 7.0% or less, B: 0.0001 to 0.020%, C: 0.03 to 0.15%, and a balance of Ni and unavoidable impurities, wherein a content of S and P contained in the unavoidable impurities is controlled to be, in mass %, S: 0.004% or less, and P: 0.010% or less, wherein the wire has a texture in which M6C type carbide and MC type carbide are uniformly dispersed in the matrix.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: May 29, 2012
    Assignees: Mitsubishi Materials Corporation, Mitsubishi Heavy Industries, Ltd.
    Inventors: Takanori Matsui, Komei Kato, Takuya Murai, Yoshitaka Uemura, Daisuke Yoshida, Ikuo Okada
  • Patent number: 7987038
    Abstract: A cruise control for a vehicle that detects an inter-vehicle distance to a preceding vehicle. A first vehicle speed instruction value is computed based on the inter-vehicle distance. Curve information of a curve in the road ahead of the vehicle is detected, and a second vehicle speed instruction value is computed for traveling on the curve based on the curve information. A final target vehicle speed is set based on the vehicle speed instruction values. When the vehicle travels through the curve while the first vehicle speed instruction value is larger than the second vehicle speed instruction value, the final target vehicle speed is set to a vehicle speed higher than the second vehicle speed instruction value and lower than the first vehicle speed instruction value. The speed of the vehicle is controlled based on the final target vehicle speed.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: July 26, 2011
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Takuya Inoue, Yoshinori Yamamura, Hidekazu Nakajima, Yoshitaka Uemura, Koki Minegishi, Yoji Seto, Masahide Nakamura
  • Publication number: 20100326466
    Abstract: An object is to reduce changes in mechanical properties of a gas turbine blade base material during repair or regeneration of a gas turbine blade. For this purpose, a gas turbine blade after being operated is washed by being immersed into a strong alkaline washing solution, and the gas turbine blade after being washed with the strong alkaline washing solution is washed with water. The gas turbine blade after being washed with water is then washed by being immersed into a weak acid washing solution, and the gas turbine blade after being washed with the weak acid washing solution is subjected to heat treatment. The gas turbine blade after the heat treatment is then immersed into a strong acid washing solution, whereby the coating formed on the surface of the gas turbine blade is removed.
    Type: Application
    Filed: February 14, 2008
    Publication date: December 30, 2010
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Tetsuji Kawakami, Ikumasa Koshiro, Rumi Haruna, Yoshitaka Uemura
  • Publication number: 20090136382
    Abstract: A Ni-based heat resistant alloy for a gas turbine combustor, comprising a composition containing, in mass %, Cr: 14.0 to 21.5%, Co: 6.5 to 14.5%, Mo: 6.5 to 10.0%, W: 1.5 to 3.5%, Al: 1.2 to 2.4%, Ti: 1.1 to 2.1%; Fe: 7.0% or less, B: 0.001 to 0.020%, C: 0.03 to 0.15%, and a balance consisting of Ni and unavoidable impurities, wherein a content of S and P contained in the unavoidable impurities is controlled to be, in mass %, S: 0.015% or less, and P: 0.015% or less, wherein the alloy has a texture in which M6C type carbide and MC type carbide are uniformly dispersed in ? phase matrix.
    Type: Application
    Filed: April 13, 2007
    Publication date: May 28, 2009
    Applicants: Mitsubishi Materials Corporation, Mitsubishi Heavy Industries, Ltd.
    Inventors: Takanori Matsui, Komei Kato, Takuya Murai, Yoshitaka Uemura, Daisuke Yoshida, Ikuo Okada
  • Publication number: 20090123328
    Abstract: A wire for welding Ni-based heat resistant alloy, comprising: a composition containing, in mass %, Cr: 14.0 to 21.5%, Co: 6.5 to 14.5%, Mo: 6.5 to 10.0%, W: 1.5 to 3.5%, Al: 1.2 to 2.4%, Ti: 1.1 to 2.1%; Fe: 7.0% or less, B: 0.0001 to 0.020%, C: 0.03 to 0.15%, and a balance of Ni and unavoidable impurities, wherein a content of S and P contained in the unavoidable impurities is controlled to be, in mass %, S: 0.004% or less, and P: 0.010% or less, wherein the wire has a texture in which M6C type carbide and MC type carbide are uniformly dispersed in the matrix.
    Type: Application
    Filed: April 16, 2007
    Publication date: May 14, 2009
    Applicants: Mitsubishi Materials Corporation, Mitsubishi Heavy Industries , Ltd.
    Inventors: Takanori Matsui, Komei Kato, Takuya Murai, Yoshitaka Uemura, Daisuke Yoshida, Ikuo Okada
  • Patent number: 7444224
    Abstract: A lane departure prevention apparatus is configured to conduct a course correction in a lane departure avoidance direction when the controller determines that there is a potential for a vehicle to depart from a driving lane. The lane departure prevention apparatus has a driving road detecting section and a lane departure avoidance control section. The driving road detecting section is configured to determine at least one of a road slope direction and a road curvature direction of a driving road upon which a host vehicle is traveling. The lane departure avoidance control section is configured to start lane departure avoidance control based on a driving direction of the host vehicle and at least one of a road slope direction and a road curvature direction detected by the driving road detecting section.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: October 28, 2008
    Assignee: Nissan Motor Co., Ltd.
    Inventors: On Sadano, Masahiro Ozaki, Yoshitaka Uemura
  • Patent number: 7424357
    Abstract: A lane departure prevention apparatus is configured for reducing risk of a vehicle while preventing lane departure. The lane departure prevention apparatus basically comprises a lane departure tendency determining section, a running condition determining section and a braking force control section. The lane departure tendency determining section determines a lane departure tendency of the host vehicle from a driving lane. The running condition determining section determines a running condition of the host vehicle. The braking force control section controls a braking force to selectively produce at least one of a yaw moment on the host vehicle in accordance with the lane departure tendency of the host vehicle to avoid departure of the host vehicle from the driving lane, and a deceleration on the host vehicle in accordance with the running condition of the host vehicle.
    Type: Grant
    Filed: July 6, 2004
    Date of Patent: September 9, 2008
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Masahiro Ozaki, On Sadano, Takashi Sugano, Yoshitaka Uemura
  • Patent number: 7409279
    Abstract: A lane departure prevention apparatus is configured to avoid lane departure even when the driver is not focused on driving operations, in a state in which the system-operating switch is OFF. The lane departure prevention apparatus has a driver condition detection section or device for detecting that the condition of the driver which is a condition in which the driver cannot perceive that the host vehicle is tending toward departure, and a lane departure avoidance control device for setting the braking control for avoiding departure in an operable state when the system-operating switch for the driver to instruct the operation of control braking for avoiding the lane departure is OFF, the braking control for avoiding departure is OFF, and the driver condition detection section or device has detected that the condition of the driver is a condition in which the driver cannot perceive that the host vehicle is tending toward departure.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: August 5, 2008
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Takashi Sugano, Yoshitaka Uemura
  • Publication number: 20080172153
    Abstract: A lane departure prevention apparatus is configured for improving safety of a vehicle while preventing lane departure. The lane departure prevention apparatus basically comprises a lane departure tendency determining section, a running condition determining section and a braking force control section. The lane departure tendency determining section determines a lane departure tendency of the host vehicle from a driving lane. The running condition determining section determines a running condition of the host vehicle. The braking force control section controls a braking force to selectively produce at least one of a yaw moment on the host vehicle in accordance with the lane departure tendency of the host vehicle to avoid departure of the host vehicle from the driving lane, and a deceleration on the host vehicle in accordance with the running condition of the host vehicle.
    Type: Application
    Filed: July 6, 2004
    Publication date: July 17, 2008
    Applicant: Nissan Motor Co., Ltd.
    Inventors: Masahiro Ozaki, On Sadano, Takashi Sugano, Yoshitaka Uemura
  • Publication number: 20080078600
    Abstract: A cruise control for a vehicle that detects an inter-vehicle distance to a preceding vehicle. A first vehicle speed instruction value is computed based one the inter-vehicle distance. Curve information of a curve in the road ahead of the vehicle is detected, and a second vehicle speed instruction value is computed for traveling on the curve based on the curve information. A final target vehicle speed is set based on the vehicle speed instruction values. When the vehicle travels through the curve while the first vehicle speed instruction value is larger than the second vehicle speed instruction value, the final target vehicle speed is set to a vehicle speed higher than the second vehicle speed instruction value and lower than the first vehicle speed instruction value. The speed of the vehicle is controlled based on the final target vehicle speed.
    Type: Application
    Filed: September 18, 2007
    Publication date: April 3, 2008
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Takuya Inoue, Yoshinori Yamamura, Hidekazu Nakajima, Yoshitaka Uemura, Koki Minegishi, Yoji Seto, Masahide Nakamura