Patents by Inventor Yoshitsugu Suzuki

Yoshitsugu Suzuki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120018060
    Abstract: Provided is a method for manufacturing a high-strength galvanized steel sheet, made from a steel sheet containing Si and/or Mn, having excellent exfoliation resistance during heavy machining. When a steel sheet containing 0.01% to 0.18% C, 0.02% to 2.0% Si, 1.0% to 3.0% Mn, 0.001% to 1.0% Al, 0.005% to 0.060% P, and 0.01% or less S on a mass basis, the remainder being Fe and unavoidable impurities, is annealed and galvanized in a continuous galvanizing line, a temperature region with a furnace temperature of A° C. to B° C. (600?A?780 and 800?B?900) is performed at an atmosphere dew-point temperature of ?5° C. or higher in a heating process.
    Type: Application
    Filed: March 30, 2010
    Publication date: January 26, 2012
    Applicant: JFE Steel Corporation
    Inventors: Yusuke Fushiwaki, Yoshiharu Sugimoto, Masahiro Yoshida, Yoshitsugu Suzuki
  • Patent number: 8076008
    Abstract: A high-strength galvanized steel sheet is provided which has a tensile strength of a level of about 590 MPa and superior formability, including a coating with good appearance. The galvanized steel sheet includes a base steel and a galvanized coating layer formed over the surface of the base steel. The galvanized steel sheet has a chemical composition containing 0.005% to 0.12% of C, 0.7% to 2.7% of Si, 0.5% to 2.8% of Mn, 0.1% or less of P, 0.07% or less of S, 1.0% or less of Al, 0.008% or less of N, and the balance being Fe and inevitable impurities on a mass basis, and a microstructure constituted of at least 90% of ferrite and 2% to 10% of martensite on an area basis. The ferrite has a Vickers hardness of 120 or more on average, and an inclusion is precipitated from the grain boundary with a length of 50% or less relative to the entire length of the grain boundary in the surface layer of the base steel with a depth of 3 ?m from the interface between the coating layer and the base steel.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: December 13, 2011
    Assignee: JFE Steel Corporation
    Inventors: Shinjiro Kaneko, Hiroshi Matsuda, Yoshiyasu Kawasaki, Tatsuya Nakagaito, Yoshitsugu Suzuki, Yusuke Fushiwaki, Takashi Kawano, Saiji Matsuoka
  • Publication number: 20110198002
    Abstract: A high-strength galvanized steel sheet has excellent mechanical properties such as a TS of 1200 MPa or more, an El of 13% or more, and a hole expansion ratio of 50% or more and a method for manufacturing the same. A high-strength galvanized steel sheet excellent in formability contains 0.05% to 0.5% C, 0.01% to 2.5% Si, 0.5% to 3.5% Mn, 0.003% to 0.100% P, 0.02% or less S, and 0.010% to 0.5% Al on a mass basis, the remainder being Fe and unavoidable impurities, and has a microstructure which contains 0% to 10% ferrite, 0% to 10% martensite, and 60% to 95% tempered martensite on an area basis as determined by structure observation and which further contains 5% to 20% retained austenite as determined by X-ray diffractometry.
    Type: Application
    Filed: January 28, 2009
    Publication date: August 18, 2011
    Applicant: JFE Steel Corporation
    Inventors: Tatsuya Nakagaito, Saiji Matsuoka, Yoshitsugu Suzuki, Yuki Toji
  • Publication number: 20110139315
    Abstract: A high-strength galvanized steel sheet has a TS of at least 590 MPa and excellent ductility and stretch flangeability and a method for manufacturing the high-strength galvanized steel sheet. The galvanized steel sheet contains, on the basis of mass percent, C: 0.05% to 0.3%, Si: 0.01% to 2.5%, Mn: 0.5% to 3.5%, P: 0.003% to 0.100% or less, S: 0.02% or less, and Al: 0.010% to 1.5%. The total of Si and Al is 0.5% to 2.5%. The remainder are iron and incidental impurities, contain 20% or more of ferrite phase, 10% or less of martensite phase, and 10% to 60% of tempered martensite, on the basis of area percent, and 3% to 10% of retained austenite phase on the basis of volume fraction. The retained austenite has an average grain size of 2.0 ?m or less.
    Type: Application
    Filed: January 19, 2009
    Publication date: June 16, 2011
    Applicant: JFE STEEL CORPORATION
    Inventors: Tatsuya Nakagaito, Saiji Matsuoka, Shinjiro Kaneko, Yoshiyasu Kawasaki, Yoshitsugu Suzuki
  • Publication number: 20110008546
    Abstract: A method for manufacturing a high strength hot-dip galvanized steel sheet includes: heating a steel sheet in a CGL, the steel sheet including on a mass percent basis, as chemical components, 0.005% to 0.12% of C, 0.7% to 1.8% of Si, 0.5% to 2.8% of Mn, 0.1% or less of P, 0.07% or less of S, 1.0% or less of Al, 0.008% or less of N, and the balance being Fe and incidental impurities; annealing at 700-940° C. for 15-600 seconds; cooling to 440-550° C. at 3° C./s or more; dipping the steel sheet at 440-550° C. into a hot-dip galvanizing bath at a temperature of 440 to 500° C. for 200 seconds or less to perform hot-dip galvanizing. By the method described above, a high strength hot-dip galvanized steel sheet having a tensile strength level of 590 MPa, which has good coating appearance and superior formability, is obtained.
    Type: Application
    Filed: December 18, 2008
    Publication date: January 13, 2011
    Applicant: JFE STEEL CORPORATION
    Inventors: Yoshitsugu Suzuki, Hiroshi Matsuda, Takashi Kawano, Yusuke Fushiwaki, Yoshiharu Sugimoto
  • Publication number: 20100314009
    Abstract: A high strength galvanized steel sheet having a TS of 780 MPa or more and exhibiting excellent stretch frangeability and bendability and a method for manufacturing the same are provided. The component composition contains C: 0.05% to 0.15%, Si: 0.8% to 2.5%, Mn: 1.5% to 3.0%, P: 0.001% to 0.05%, S: 0.0001% to 0.01%, Al: 0.001% to 0.1%, N: 0.0005% to 0.01%, Cr: 0.1% to 1.0%, Ti: 0.0005% to 0.1%, B: 0.0003% to 0.003%, and the remainder composed of iron and incidental impurities, on a percent by mass basis. The microstructure includes 30% or more of ferrite phase and 30% or more, and 70% or less of martensite phase on an areal fraction basis, wherein regarding the above-described martensite phase, the proportion of a tempered martensite phase is 20% or more relative to the whole martensite phase and the proportion of a martensite phase having a grain diameter of 1 ?m or less is 10% or less relative to the whole martensite phase.
    Type: Application
    Filed: December 12, 2008
    Publication date: December 16, 2010
    Applicant: JFE STEEL CORPORATION
    Inventors: Shinjiro Kaneko, Yoshiyasu Kawasaki, Saiji Matsuoka, Yoshitsugu Suzuki, Koji Maitake
  • Publication number: 20100112377
    Abstract: A high-strength galvanized steel sheet is provided which has a tensile strength of a level of about 590 MPa and superior formability, including a coating with good appearance. The galvanized steel sheet includes a base steel and a galvanized coating layer formed over the surface of the base steel. The galvanized steel sheet has a chemical composition containing 0.005% to 0.12% of C, 0.7% to 2.7% of Si, 0.5% to 2.8% of Mn, 0.1% or less of P, 0.07% or less of S, 1.0% or less of Al, 0.008% or less of N, and the balance being Fe and inevitable impurities on a mass basis, and a microstructure constituted of at least 90% of ferrite and 2% to 10% of martensite on an area basis. The ferrite has a Vickers hardness of 120 or more on average, and an inclusion is precipitated from the grain boundary with a length of 50% or less relative to the entire length of the grain boundary in the surface layer of the base steel with a depth of 3 ?m from the interface between the coating layer and the base steel.
    Type: Application
    Filed: March 27, 2008
    Publication date: May 6, 2010
    Applicant: JFE STEEL CORPORATION
    Inventors: Shinjiro Kaneko, Hiroshi Matsuda, Yoshiyasu Kawasaki, Tatsuya Nakagaito, Yoshitsugu Suzuki, Yusuke Fushiwaki, Takashi Kawano, Saiji Matsuoka
  • Publication number: 20100104891
    Abstract: A high-strength galvanized steel sheet having excellent formability contains as a chemical component of steel on a mass percent basis: 0.05% to 0.3% of C; more than 0.60% to 2.0% of Si; 0.50% to 3.50% of Mn; 0.003% to 0.100% of P; 0.010% or less of S; 0.010% to 0.06% of Al; 0.007% or less of N; and the balance including Fe and inevitable impurities, and in the microstructure of the steel sheet, the standard deviation of nano-hardness is 1.50 GPa or less.
    Type: Application
    Filed: March 18, 2008
    Publication date: April 29, 2010
    Applicant: JFE STEEL CORPORATION
    Inventors: Tatsuya Nakagaito, Yoshitsugu Suzuki, Shusaku Takagi, Saiji Matsuoka, Takashi Kawano, Yoshiharu Sugimoto
  • Publication number: 20080070060
    Abstract: The hot-dip galvanized steel sheet has: a steel sheet containing 0.1 to 3.0% of Si by mass; a hot-dip galvanizing layer; and a segregated layer, being placed between the steel sheet and the hot-dip galvanizing layer, having a thickness in a range from 0.01 to 100 ?m; containing an oxide containing Si, and being composed of at least one component selected from the group consisting of S, C, Cl, Na, K, B, P, F, and N. The hot-dip galvanized steel sheet shows beautiful surface appearance without generating non-plating portion and provides excellent plating adhesion and sliding property in spite of using a base steel sheet containing a large quantity of Si. Furthermore, the alloy hot-dip galvanized steel sheet obtained by allying the hot-dip galvanized plating also has excellent anti-powdering property.
    Type: Application
    Filed: October 7, 2005
    Publication date: March 20, 2008
    Applicant: JFE STEEL CORPORATION
    Inventors: Yoshitsugu Suzuki, Yusuke Fushiwaki, Masahiko Tada, Yoichi Tobiyama, Hisanori Ando, Takashi Kawano
  • Patent number: 7074497
    Abstract: A coated steel sheet having a coated layer on surfaces of a steel sheet of a composition containing not less than 0.1 mass % and under 3 mass % of Al, wherein a following condition A or B is met: A: An AlN precipitate layer exists on a matrix side near an interface between said steel sheet and said coated layer B: Oxide of Al exists in said matrix right under said surfaces of said steel sheet.
    Type: Grant
    Filed: February 26, 2003
    Date of Patent: July 11, 2006
    Assignee: JFE Steel Corporation
    Inventors: Yoshitsugu Suzuki, Kazuaki Kyono
  • Patent number: 6928361
    Abstract: A control apparatus for a motor vehicle is provided in which each of a plurality of output values of the vehicle varies depending upon a plurality of input control parameters for controlling the vehicle. The control apparatus changes the input control parameter or parameters so that each of the output values becomes substantially equal to a corresponding target output value. The control apparatus then determines adapted values of the input control parameters, based on values of the input control parameters obtained when each of the output values becomes substantially equal to the corresponding target output value or falls within a permissible adaptation range of the target output value.
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: August 9, 2005
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shigeki Nakayama, Toshio Suematsu, Takao Fukuma, Tomihisa Oda, Yasuo Harada, Akio Matsunaga, Tomoyuki Ono, Teruhiko Miyake, Yoshitsugu Suzuki
  • Publication number: 20040234807
    Abstract: A coated steel sheet having a coated layer on surfaces of a steel sheet of a composition containing not less than 0.
    Type: Application
    Filed: January 28, 2004
    Publication date: November 25, 2004
    Inventors: Yoshitsugu Suzuki, Kazuaki Kyono
  • Publication number: 20040098190
    Abstract: A control apparatus for a motor vehicle is provided in which each of a plurality of output values of the vehicle varies depending upon a plurality of input control parameters for controlling the vehicle. The control apparatus changes the input control parameter or parameters so that each of the output values becomes substantially equal to a corresponding target output value. The control apparatus then determines adapted values of the input control parameters, based on values of the input control parameters obtained when each of the output values becomes substantially equal to the corresponding target output value or falls within a permissible adaptation range of the target output value.
    Type: Application
    Filed: May 29, 2003
    Publication date: May 20, 2004
    Inventors: Shigeki Nakayama, Toshio Suematsu, Takao Fukuma, Tomihisa Oda, Yasuo Harada, Akio Matsunaga, Tomoyuki Ono, Teruhiko Miyake, Yoshitsugu Suzuki
  • Patent number: 6558815
    Abstract: The hot dip Zn galvanized steel sheet has excellent balance between tensile strength and ductility and excellent coating adhesion, an average composition of a base steel thereof includes: 0.05-0.25 mass % of C; not more than 2.0 mass % of Si; 1.0-2.5 mass % of Mn; and 0.005-0.10 mass % of Al, wherein the C content at the base steel surface layer portion right under a coating layer is not more than 0.02 mass %, the base steel structure contains not less than 50% of martensite phase, the martensite phase including both tempered martensite phase and fine size martensite phase, and the remaining portion of the base steel structure being formed by ferrite phase and residual austenite phase. A method of producing the hot dip Zn galvanizing steel sheet is described.
    Type: Grant
    Filed: October 30, 2001
    Date of Patent: May 6, 2003
    Assignee: Kawasaki Steel Corporation
    Inventors: Yoshitsugu Suzuki, Chiaki Kato
  • Patent number: 6537394
    Abstract: A hot-dip galvanized high-strength steel sheet having superior workability and galvanizability containing: 0.01% to 0.20% by weight of C; 1.0% by weight or less of Si; more than 1.5% to 3.0% by weight of Mn; 0.10% by weight or less of P; 0.05% by weight or less of S; 0.10% by weight or less of Al; 0.010% by weight or less of N; 0.010% to 1.0% by weight in total of at least one element selected from the group consisting of Ti, Nb, and V; and the balance being Fe and incidental impurities; in which the steel sheet has the metal structure in which the areal rate of the ferrite phase is 50% or more, the ferrite phase has an average grain diameter of 10 &mgr;m or less, and the thickness of a band-like structure composed of the second phase satisfies the relationship Tb/T≦0.005, where Tb is the average thickness in the sheet thickness direction of the band-like structure and T is the thickness of the steel sheet, and a method for producing the same.
    Type: Grant
    Filed: June 21, 2001
    Date of Patent: March 25, 2003
    Assignee: Kawasaki Steel Corporation
    Inventors: Kazunori Osawa, Kei Sakata, Osamu Furukimi, Yoshitsugu Suzuki, Akio Shinohara
  • Patent number: 6410163
    Abstract: The present invention provides a high strength thin excellent workability and galvanizability, having a composition comprising from 0.01 to 0.20 wt. % C, up to 1.0 wt. % Si, from 1.0 to 3.0 wt. % Mn, up to 0.10 wt. % P, up to 0.05 wt. % S, up to 0.10 wt. % Al, up to 0.010 wt. % N, up to 1.0 wt. % Cr, from 0.001 to 1.00 wt. % Mo, and the balance Fe and incidental impurities, wherein a band structure comprising a secondary phase has a thickness satisfying the relation Tb/T≦0.005 (where, Tb: average thickness of the band structure in the thickness direction of steel sheet; T: steel sheet thickness), and a manufacturing method thereof, and a manufacturing method of a high strength hot-dip galvanized steel sheet or a high strength galvannealed steel sheet applying hot-dip galvanizing or further galvannealing, and giving an excellent workability, a high tensile strength, and excellent galvanizability, coating adhesion and corrosion resistance.
    Type: Grant
    Filed: May 30, 2000
    Date of Patent: June 25, 2002
    Assignee: Kawasaki Steel Corporation
    Inventors: Yoshitsugu Suzuki, Kazunori Osawa, Chiaki Kato, Yoichi Tobiyama, Kei Sakata, Osamu Furukimi, Akio Shinohara
  • Patent number: 5205329
    Abstract: A wire harness and a method of and apparatus for manufacturing the same is disclosed. The present wire harness comprises a plurality of electric wires, constituting its trunk line portion and branch line portions, laid on a wiring board so as to form a desired pattern and a clamp chain, formed of a plurality of wire clamps arranged in parallel at predetermined pitches, attached to the edge portion at least at one side of the wiring board, in which the electric wires are locked to specific wire clamps of the clamp chain, and thereby, both end portions of the electric wires are arranged so as to be in parallel at predetermined pitches and projecting from the edge portion.
    Type: Grant
    Filed: August 9, 1991
    Date of Patent: April 27, 1993
    Assignee: Yazaki Corporation
    Inventors: Yoshitsugu Suzuki, Shougo Iizuka, Shigeo Kajiyama, Sanae Suzuki, Shigeji Kudo, Toshihiro Inoue, Norio Isobe, Yoshihisa Oosumi
  • Patent number: 5082253
    Abstract: A wire harness and a method of and apparatus for manufacturing the same is disclosed. The present wire harness comprises a plurality of electric wires, constituting its trunk line portion and branch line portions, laid on a wiring board so as to form a desired pattern and a clamp chain, formed of a plurality of wire clamps arranged in parallel at predetermined pitches, attached to the edge portion at least at one side of the wiring board, in which the electric wires are locked to specific wire clamps of the clamp chain, and thereby, both end portions of the electric wires are arranged to as to be in parallel at predetermined pitches and projecting from the edge portion.
    Type: Grant
    Filed: October 25, 1989
    Date of Patent: January 21, 1992
    Inventors: Yoshitsugu Suzuki, Shougo Iizuka, Shigeo Kajiyama, Sanae Suzuki, Shigeji Kudo
  • Patent number: 4476629
    Abstract: A method and apparatus for automatically producing a wire harness. A plurality of wiring blocks are arranged on a workbench. Each wiring block has a wire clamping section, a wire cutting section, and a terminal press attaching section. The wire cutting section and the terminal press attaching section can be separated from the wire clamping section. This structure makes it possible to automate a series of operations including wire cutting, wire peeling, and terminal attaching operations.
    Type: Grant
    Filed: October 5, 1981
    Date of Patent: October 16, 1984
    Assignee: Yazaki Corporation
    Inventors: Yoshitsugu Suzuki, Shogo Iizuka, Shigeo Kajiyama, Kenji Usui, Masahiro Kobayashi, Toshinori Igura, Shigezi Kudo, Sanae Suzuki
  • Patent number: 4454652
    Abstract: A wire harness manufactured by a new method and a new apparatus is provided. A covered wire paid out from a selected one of reels is extended in a predetermined lay-out and fixed. The thus fixed wire is cut-off from the reel. Then, another wire is paid out from another reel for arranging it in a juxtaposing relation to the previously laid-out wire and cut off from the reel. After repeating the above steps, the arranged wires are tied up to form a wire harness. There is also provided a device which puts the above method into practice, thereby reducing complicated assorting work involved in the manufacture of a wire harness. A method and a device for automatically uncovering end portions of each wire of the wire harness and attaching terminals thereto are also provided to greatly increasing the productivity.
    Type: Grant
    Filed: January 8, 1981
    Date of Patent: June 19, 1984
    Assignee: Yazaki Corporation
    Inventors: Yoshitsugu Suzuki, Syogo Iizuka, Shigeo Kajiyama, Kenji Usui, Masahiro Kobayashi