Patents by Inventor Yoshiyasu Ito

Yoshiyasu Ito has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230384248
    Abstract: A transmission type small-angle scattering device of the present invention includes a goniometer 10 including a rotation arm 11. The rotation arm 11 is freely turnable around a ?-axis extending in a horizontal direction from an origin with a vertical arrangement state of the rotation arm 11 being defined as the origin, and has a vertical arrangement structure in which an X-ray irradiation unit 20 is installed on a lower-side end portion of the rotation arm 11, and a two-dimensional X-ray detector 30 is installed on an upper-side end portion of the rotation arm 11 to form a vertical arrangement structure.
    Type: Application
    Filed: July 31, 2023
    Publication date: November 30, 2023
    Applicant: RIGAKU CORPORATION
    Inventors: Naoki Matsushima, Kiyoshi Ogata, Sei Yoshihara, Yoshiyasu Ito, Kazuhiko Omote, Hiroshi Motono, Shigematsu Asano, Katsutaka Horada, Sensui Yasuda
  • Publication number: 20230375485
    Abstract: A transmission type small-angle scattering device of the present invention includes a goniometer 10 including a rotation arm 11. The rotation arm 11 is freely turnable around a ?-axis extending in a horizontal direction from an origin with a vertical arrangement state of the rotation arm 11 being defined as the origin, and has a vertical arrangement structure in which an X-ray irradiation unit 20 is installed on a lower-side end portion of the rotation arm 11, and a two-dimensional X-ray detector 30 is installed on an upper-side end portion of the rotation arm 11 to form a vertical arrangement structure.
    Type: Application
    Filed: July 31, 2023
    Publication date: November 23, 2023
    Applicant: RIGAKU CORPORATION
    Inventors: Naoki Matsushima, Kiyoshi Ogata, Sei Yoshihara, Yoshiyasu Ito, Kazuhiko Omote, Hiroshi Motono, Shigematsu Asano, Katsutaka Horada, Sensui Yasuda
  • Patent number: 11754515
    Abstract: A transmission type small-angle scattering device of the present invention includes a goniometer 10 including a rotation arm 11. The rotation arm 11 is freely turnable around a ?-axis extending in a horizontal direction from an origin with a vertical arrangement state of the rotation arm being defined as the origin, and has a vertical arrangement structure in which an X-ray irradiation unit 20 is installed on a lower-side end portion of the rotation arm 11, and a two-dimensional X-ray detector 30 is installed on an upper-side end portion of the rotation arm 11 to form a vertical arrangement structure.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: September 12, 2023
    Assignee: RIGAKU CORPORATION
    Inventors: Naoki Matsushima, Kiyoshi Ogata, Sei Yoshihara, Yoshiyasu Ito, Kazuhiko Omote, Hiroshi Motono, Shigematsu Asano, Katsutaka Horada, Sensui Yasuda
  • Patent number: 11408837
    Abstract: Provided is a fine structure determination method capable of easily determining tilt angles of columnar scattering bodies that are long in a thickness direction, and provided are an analysis apparatus and an analysis program thereof. There is provided an analysis method for a fine structure of a plate-shaped sample formed to have columnar scattering bodies that are long in a thickness direction and periodically arranged, comprising the steps of preparing scattering intensity data from the plate-shaped sample, that is generated via transmission of X-rays; and determining tilt angles of the scattering bodies in the plate-shaped sample with respect to a reference rotation position at which a surface of the plate-shaped sample is perpendicular to an incident direction of the X-rays, based on the prepared scattering intensity data.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: August 9, 2022
    Assignee: RIGAKU CORPORATION
    Inventors: Yoshiyasu Ito, Kazuhiko Omote
  • Publication number: 20220170869
    Abstract: A transmission type small-angle scattering device of the present invention includes a goniometer 10 including a rotation arm 11. The rotation arm 11 is freely turnable around a ?-axis extending in a horizontal direction from an origin with a vertical arrangement state of the rotation arm being defined as the origin, and has a vertical arrangement structure in which an X-ray irradiation unit 20 is installed on a lower-side end portion of the rotation arm 11, and a two-dimensional X-ray detector 30 is installed on an upper-side end portion of the rotation arm 11 to form a vertical arrangement structure.
    Type: Application
    Filed: January 8, 2020
    Publication date: June 2, 2022
    Applicant: RIGAKU CORPORATION
    Inventors: Naoki Matsushima, Kiyoshi Ogata, Sei Yoshihara, Yoshiyasu Ito, Kazuhiko Omote, Hiroshi Motono, Shigematsu Asano, Katsutaka Horada, Sensui Yasuda
  • Patent number: 11148705
    Abstract: A steering column device includes: a lower tube configured to be attached to a vehicle body; a upper tube provided to be movable relative to the lower tube in a vehicle body front-rear direction; and a cylindrical retainer interposed between the lower tube and the upper tube. In addition, the steering column device includes an energy absorption mechanism arranged between the lower tube and the upper tube. The energy absorption mechanism has: a long hole provided in the lower tube; a restriction portion provided on the retainer and arranged in the long hole; and a restriction projection provided on the upper tube, and arranged in the long hole while being positioned on a rear side of the vehicle body relative to the restriction portion.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: October 19, 2021
    Assignee: FUJI KIKO CO., LTD.
    Inventors: Yoshiyasu Ito, Takahiro Baitou
  • Patent number: 11131637
    Abstract: Provided is an analysis method for a fine structure, that is capable of determining shapes of scattering bodies that are long in a thickness direction of a plate-shaped sample; and provided are an apparatus and a program thereof. There is provided an analysis method for a fine structure of a plate-shaped sample formed to have scattering bodies that are long in a thickness direction and periodically arranged, comprising the steps of preparing data of a scattering intensity from the plate-shaped sample measured via transmission of X-rays at a plurality of ? rotation angles; calculating a scattering intensity of the X-rays scattered by the plate-shaped sample under a specific condition; fitting the calculated scattering intensity to the prepared scattering intensity; and determining shapes of the scattering bodies for the plate-shaped sample, based on a result of the fitting.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: September 28, 2021
    Assignee: RIGAKU CORPORATION
    Inventors: Yoshiyasu Ito, Kazuhiko Omote
  • Patent number: 11079345
    Abstract: An X-ray inspection device of the present invention includes a sample placement unit 11 for placing a sample as an inspection target therein, a sample placement unit positioning mechanism 30 for moving the sample placement unit 11, a goniometer 20 including first and second rotation members 22, 23 that rotate independently of each other, an X-ray irradiation unit 40 installed on the first rotation member 22, and a two-dimensional X-ray detector 50 installed on the second rotation member 23. The sample placement unit positioning mechanism 30 includes a ? rotation mechanism 35 for rotating the sample placement unit 11 and a ?-axis about a ?-axis that is orthogonal to a ?s-axis and a ?d-axis at a measurement point P and extends horizontally.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: August 3, 2021
    Assignee: RIGAKU CORPORATION
    Inventors: Naoki Matsushima, Kiyoshi Ogata, Kazuhiko Omote, Sei Yoshihara, Yoshiyasu Ito, Hiroshi Motono, Hideaki Takahashi, Akifusa Higuchi, Shiro Umegaki, Shigematsu Asano, Ryotaro Yamaguchi, Katsutaka Horada
  • Publication number: 20210199054
    Abstract: A thermal barrier coating material contains a compound X that is a cation-deficient-type defective perovskite complex oxide. Unit cells of the compound X each include six oxygen atoms and has a structure in which two octahedrons sharing one oxygen atom are aligned. In the compound X, central axes of two octahedrons that belong to adjacent unit cells, respectively, and are adjacent to each other are inclined relative to each other. A plurality of sets of the two octahedrons that belong to the adjacent unit cells, respectively, and are adjacent to each other are arranged to form a periodic structure in which octahedrons having different inclinations are alternately arranged, and the compound X has a boundary surface at which a periodicity of the periodic structure changes, in a crystal structure thereof.
    Type: Application
    Filed: September 2, 2019
    Publication date: July 1, 2021
    Applicants: JAPAN FINE CERAMICS CENTER, TOCALO CO., LTD.
    Inventors: Tsuneaki MATSUDAIRA, Satoshi KITAOKA, Naoki KAWASHIMA, Takeharu KATO, Daisaku YOKOE, Takashi OGAWA, Craig FISHER, Yoichiro HABU, Mikako NAGAO, Yoshiyasu ITO, Yuhei OHIDE, Kaito TAKAGI
  • Patent number: 10983073
    Abstract: A hybrid inspection system of the present invention is an inspection system including a first inspection device (1) for inspecting a sample (11) based on X-ray measurement data obtained by irradiating the sample (11) with X-rays, and a second inspection device (2) for inspecting the sample (11) by a measuring method using no X-rays. The X-ray measurement data obtained by the first inspection device or an analysis result of the X-ray measurement data is output to the second inspection device (2). In the second inspection device (2), the structure of the sample (11) is analyzed by using the X-ray measurement data input from the first inspection device (1) or the analysis result of the X-ray measurement data.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: April 20, 2021
    Assignee: RIGAKU CORPORATION
    Inventors: Kiyoshi Ogata, Kazuhiko Omote, Yoshiyasu Ito
  • Publication number: 20210063326
    Abstract: An X-ray inspection device of the present invention includes a sample placement unit 11 for placing a sample as an inspection target therein, a sample placement unit positioning mechanism 30 for moving the sample placement unit 11, a goniometer 20 including first and second rotation members 22, 23 that rotate independently of each other, an X-ray irradiation unit 40 installed on the first rotation member 22, and a two-dimensional X-ray detector 50 installed on the second rotation member 23. The sample placement unit positioning mechanism 30 includes a ? rotation mechanism 35 for rotating the sample placement unit 11 and a ?-axis about a ?-axis that is orthogonal to a ?s-axis and a ?d-axis at a measurement point P and extends horizontally.
    Type: Application
    Filed: September 5, 2018
    Publication date: March 4, 2021
    Applicant: RIGAKU CORPORATION
    Inventors: Naoki Matsushima, Kiyoshi Ogata, Kazuhiko Omote, Sei Yoshihara, Yoshiyasu Ito, Hiroshi Motono, Hideaki Takahashi, Akifusa Higuchi, Shiro Umegaki, Shigematsu Asano, Ryotaro Yamaguchi, Katsutaka Horada
  • Publication number: 20210047968
    Abstract: A thermal barrier coating includes: a metal bonding layer made of an alloy containing Al; a thermal barrier layer; and an intermediate layer provided between the metal bonding layer and the thermal barrier layer. The thermal barrier layer contains a compound represented by the following general formula (1), LnxTayHfzO(3x+5y+4z)/2 (1) (wherein Ln is an atom of one element selected from among rare earth elements, x is 0 to 1.0, y is 0.8 to 3.0, and z is 0 to 7.0). The intermediate layer contains at least one layer selected from among the following (A) to (C): (A) a layer containing hafnium oxide (HfO2) as a main component; (B) a layer containing, as a main component, a compound consisting of tantalum (Ta), hafnium (Hf), and oxygen (O); and (C) a layer containing, as a main component, a compound consisting of a rare earth element, tantalum (Ta), hafnium (Hf), and oxygen (O).
    Type: Application
    Filed: March 1, 2019
    Publication date: February 18, 2021
    Applicants: JAPAN FINE CERAMICS CENTER, TOCALO CO.,LTD.
    Inventors: Tsuneaki MATSUDAIRA, Satoshi KITAOKA, Naoki KAWASHIMA, Daisaku YOKOE, Makoto TANAKA, Yoichiro HABU, Mikako NAGAO, Kazuo NODA, Yoshiyasu ITO, Yuhei OHIDE, Kaito TAKAGI
  • Publication number: 20210024119
    Abstract: A steering column device includes: a lower tube configured to be attached to a vehicle body; a upper tube provided to be movable relative to the lower tube in a vehicle body front-rear direction; and a cylindrical retainer interposed between the lower tube and the upper tube. In addition, the steering column device includes an energy absorption mechanism arranged between the lower tube and the upper tube. The energy absorption mechanism has: a long hole provided in the lower tube; a restriction portion provided on the retainer and arranged in the long hole; and a restriction projection provided on the upper tube, and arranged in the long hole while being positioned on a rear side of the vehicle body relative to the restriction portion.
    Type: Application
    Filed: July 22, 2020
    Publication date: January 28, 2021
    Inventors: Yoshiyasu ITO, Takahiro BAITOU
  • Patent number: 10876978
    Abstract: In an X-ray inspection device according to the present invention, an X-ray irradiation unit 40 includes a first X-ray optical element 42 for focusing characteristic X-rays in a vertical direction, and a second X-ray optical element 43 for focusing the characteristic X-rays in a horizontal direction. The first X-ray optical element 42 is constituted by a crystal material having high crystallinity. The second X-ray optical element includes a multilayer mirror.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: December 29, 2020
    Assignee: RIGAKU CORPORATION
    Inventors: Kiyoshi Ogata, Kazuhiko Omote, Sei Yoshihara, Yoshiyasu Ito, Hiroshi Motono, Hideaki Takahashi, Takao Kinefuchi, Akifusa Higuchi, Shiro Umegaki, Shigematsu Asano, Ryotaro Yamaguchi, Katsutaka Horada, Makoto Kambe, Licai Jiang, Boris Verman
  • Publication number: 20200333267
    Abstract: Provided is a fine structure determination method capable of easily determining tilt angles of columnar scattering bodies that are long in a thickness direction, and provided are an analysis apparatus and an analysis program thereof. There is provided an analysis method for a fine structure of a plate-shaped sample formed to have columnar scattering bodies that are long in a thickness direction and periodically arranged, comprising the steps of preparing scattering intensity data from the plate-shaped sample, that is generated via transmission of X-rays; and determining tilt angles of the scattering bodies in the plate-shaped sample with respect to a reference rotation position at which a surface of the plate-shaped sample is perpendicular to an incident direction of the X-rays, based on the prepared scattering intensity data.
    Type: Application
    Filed: April 21, 2020
    Publication date: October 22, 2020
    Applicant: Rigaku Corporation
    Inventors: Yoshiyasu ITO, Kazuhiko OMOTE
  • Publication number: 20200333268
    Abstract: Provided is an analysis method for a fine structure, that is capable of determining shapes of scattering bodies that are long in a thickness direction of a plate-shaped sample; and provided are an apparatus and a program thereof. There is provided an analysis method for a fine structure of a plate-shaped sample formed to have scattering bodies that are long in a thickness direction and periodically arranged, comprising the steps of preparing data of a scattering intensity from the plate-shaped sample measured via transmission of X-rays at a plurality of co rotation angles; calculating a scattering intensity of the X-rays scattered by the plate-shaped sample under a specific condition; fitting the calculated scattering intensity to the prepared scattering intensity; and determining shapes of the scattering bodies for the plate-shaped sample, based on a result of the fitting.
    Type: Application
    Filed: April 21, 2020
    Publication date: October 22, 2020
    Applicant: Rigaku Corporation
    Inventors: Yoshiyasu ITO, Kazuhiko OMOTE
  • Patent number: 10514345
    Abstract: An X-ray thin film inspection device according to the present invention has an X-ray irradiation unit 40 mounted in a first rotation arm 32, an X-ray detector 50 mounted in a second rotation arm 33, a fluorescence X-ray detector 60 for detecting fluorescent X-ray occurring from an inspection target due to irradiation of X-ray, a temperature measuring unit 110 for measuring the temperature corresponding to the temperature of the X-ray thin film inspection device, and a temperature correcting system (central processing unit 100) for correcting an inspection position on the basis of the temperature measured by the temperature measuring unit 110.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: December 24, 2019
    Assignee: RIGAKU CORPORATION
    Inventors: Kiyoshi Ogata, Kazuhiko Omote, Yoshiyasu Ito, Hiroshi Motono, Muneo Yoshida, Hideaki Takahashi
  • Patent number: 10473598
    Abstract: An X-ray thin film inspection device of the present invention includes an X-ray irradiation unit 40 installed on a first rotation arm 32, an X-ray detector 50 installed on a second rotation arm 33, and a fluorescence X-ray detector 60 for detecting fluorescence X-rays generated from an inspection target upon irradiation of X-rays. The X-ray irradiation unit 40 includes an X-ray optical element 43 comprising a confocal mirror for receiving X-rays radiated from an X-ray tube 42, reflects plural focused X-ray beams monochromatized at a specific wavelength and focuses the plural focused X-ray beams to a preset focal point, and a slit mechanism 46 for passing therethrough any number of focused X-ray beams out of the plural focused X-ray beams reflected from the X-ray optical element 43.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: November 12, 2019
    Assignee: RIGAKU CORPORATION
    Inventors: Kiyoshi Ogata, Sei Yoshihara, Takao Kinefuchi, Shiro Umegaki, Shigematsu Asano, Katsutaka Horada, Muneo Yoshida, Hiroshi Motono, Hideaki Takahashi, Akifusa Higuchi, Kazuhiko Omote, Yoshiyasu Ito, Naoki Kawahara, Asao Nakano
  • Publication number: 20190227006
    Abstract: A hybrid inspection system of the present invention is an inspection system including a first inspection device (1) for inspecting a sample (11) based on X-ray measurement data obtained by irradiating the sample (11) with X-rays, and a second inspection device (2) for inspecting the sample (11) by a measuring method using no X-rays. The X-ray measurement data obtained by the first inspection device or an analysis result of the X-ray measurement data is output to the second inspection device (2). In the second inspection device (2), the structure of the sample (11) is analyzed by using the X-ray measurement data input from the first inspection device (1) or the analysis result of the X-ray measurement data.
    Type: Application
    Filed: July 14, 2017
    Publication date: July 25, 2019
    Inventors: Kiyoshi Ogata, Kazuhiko Omote, Yoshiyasu Ito
  • Publication number: 20190227005
    Abstract: In an X-ray inspection device according to the present invention, an X-ray irradiation unit 40 includes a first X-ray optical element 42 for focusing characteristic X-rays in a vertical direction, and a second X-ray optical element 43 for focusing the characteristic X-rays in a horizontal direction. The first X-ray optical element 42 is constituted by a crystal material having high crystallinity. The second X-ray optical element includes a multilayer mirror.
    Type: Application
    Filed: July 12, 2017
    Publication date: July 25, 2019
    Inventors: Kiyoshi Ogata, Kazuhiko Omote, Sei Yoshihara, Yoshiyasu Ito, Hiroshi Motono, Hideaki Takahashi, Takao Kinefuchi, Akifusa Higuchi, Shiro Umegaki, Shigematsu Asano, Ryotaro Yamaguchi, Katsutaka Horada, Makoto Kambe, Licai Jiang, Boris Verman