Patents by Inventor Yosuke Hamaoka

Yosuke Hamaoka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240348229
    Abstract: Aspects of this disclosure relate to a filter that includes an acoustic wave device with a multi-layer substrate with heat dissipation. The multi-layer substrate includes a support substrate (e.g., a quartz substrate), a piezoelectric layer, an interdigital transducer electrode on the piezoelectric layer, and a thermally conductive layer configured to dissipate heat associated with the acoustic wave device. The thermally conductive layer is disposed between the support substrate and the piezoelectric layer. The thermally conductive layer has a thickness that is greater than 10 nanometers and less than a thickness of the piezoelectric layer.
    Type: Application
    Filed: June 21, 2024
    Publication date: October 17, 2024
    Inventors: Keiichi Maki, Rei Goto, Gong Bin Tang, Yosuke Hamaoka
  • Patent number: 12088278
    Abstract: Aspects of this disclosure relate bulk acoustic wave resonators with a patterned mass loading layer at least contributing to a difference in mass loading between a main acoustically active region of the bulk acoustic wave resonator and a recessed frame region of the bulk acoustic wave resonator. Related methods of manufacturing can involve forming the patterned mass loading layer in the main acoustically active region and the recessed frame region in a common processing step such that the patterned mass loading layer has a higher density in the main acoustically active region than in the recessed frame region.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: September 10, 2024
    Assignee: Skyworks Global Pte. Ltd.
    Inventors: Kwang Jae Shin, Jiansong Liu, Jong Duk Han, Jae Hyung Lee, Yiliu Wang, Yosuke Hamaoka, Alexandre Augusto Shirakawa, Benfeng Zhang
  • Publication number: 20240297635
    Abstract: Aspects of this disclosure relate to bulk acoustic wave resonators with patterned mass loading layers. Two different bulk acoustic wave resonators of an acoustic wave filter and/or an acoustic wave die have respective patterned mass loading layers with different densities. The patterned mass loading layers contribute to the two different bulk acoustic wave resonators having different respective resonant frequencies. Related bulk acoustic wave devices, filters, acoustic wave dies, radio frequency modules, wireless communication devices, and methods are disclosed.
    Type: Application
    Filed: March 12, 2024
    Publication date: September 5, 2024
    Inventors: Kwang Jae Shin, Jiansong Liu, Jong Duk Han, Jae Hyung Lee, Yiliu Wang, Yosuke Hamaoka, Alexandre Augusto Shirakawa, Benfeng Zhang
  • Publication number: 20240275363
    Abstract: Aspects and embodiments disclosed herein include an acoustic wave device comprising a substrate, a pair of inter-digital transducer (IDT) electrodes formed on the substrate, each of the pair of IDT electrodes including a bus bar and a plurality of fingers extending from the bus bar, fingers of one IDT electrode arranged interleaved with fingers of the other IDT electrode, each of the bus bars of the pair of IDT electrodes having a slotted portion configured on an upper surface of the bus bars opposite to a lower surface contacting the substrate such that at least one hollow within each of the bus bars is opened at least at the upper surface of each of the bus bars, and a dielectric film covering the pair of IDT electrodes, at least a portion of the dielectric film filling in the at least one hollow of each of the bus bars.
    Type: Application
    Filed: January 30, 2024
    Publication date: August 15, 2024
    Inventors: Kurt George Steiner, Alan Sangone Chen, Yosuke Hamaoka, Benjamin Paul Abbott
  • Publication number: 20240258994
    Abstract: An acoustic wave device is disclosed. The acoustic wave device can include a piezoelectric layer, and an interdigital transducer electrode formed with the piezoelectric layer. The interdigital transducer electrode includes a first layer, a second layer over the first layer, and a seed layer between the first layer and the piezoelectric layer. A combination of the first layer and the seed layer has a resistivity that is lower than a resistivity of the first layer alone.
    Type: Application
    Filed: January 30, 2024
    Publication date: August 1, 2024
    Inventors: Kurt George Steiner, Alan Sangone Chen, Yosuke Hamaoka, Benjamin Paul Abbott, Michael David Hill, Kezia Cheng
  • Patent number: 12047053
    Abstract: Aspects of this disclosure relate to a surface acoustic wave resonator having a multi-layer substrate with heat dissipation. The multi-layer substrate includes a support substrate, a piezoelectric layer, and a thermally conductive layer configured to dissipate heat associated with the surface acoustic wave resonator. The thermally conductive layer is disposed between the support substrate and the piezoelectric layer. Related surface acoustic wave filters, radio frequency modules, and wireless communication devices are also disclosed.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: July 23, 2024
    Assignee: Skyworks Solutions, Inc.
    Inventors: Keiichi Maki, Rei Goto, Gong Bin Tang, Yosuke Hamaoka
  • Patent number: 12021506
    Abstract: Aspects of this disclosure relate to bulk acoustic wave resonators with patterned mass loading layers. Two different bulk acoustic wave resonators of an acoustic wave filter and/or an acoustic wave die have respective patterned mass loading layers with different densities. The patterned mass loading layers contribute to the two different bulk acoustic wave resonators having different respective resonant frequencies. Related bulk acoustic wave devices, filters, acoustic wave dies, radio frequency modules, wireless communication devices, and methods are disclosed.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: June 25, 2024
    Assignee: Skyworks Global Pte. Ltd.
    Inventors: Kwang Jae Shin, Jiansong Liu, Jong Duk Han, Jae Hyung Lee, Yiliu Wang, Yosuke Hamaoka, Alexandre Augusto Shirakawa, Benfeng Zhang
  • Patent number: 11799445
    Abstract: Aspects of this disclosure relate to an acoustic wave device that includes a multi-layer interdigital transducer electrode. The acoustic wave device includes a piezoelectric layer and an interdigital transducer electrode on the piezoelectric layer. The interdigital transducer electrode includes a first interdigital transducer electrode layer positioned between a second interdigital transducer electrode layer and the piezoelectric layer. The second interdigital transducer electrode layer can include aluminum and having a thickness of at least 200 nanometers. The acoustic wave device can include a temperature compensation layer arranged such that the interdigital transducer electrode is positioned between the piezoelectric layer and at least a portion of the temperature compensation layer. Related filters, modules, wireless communication devices, and methods are disclosed.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: October 24, 2023
    Assignee: Skyworks Solutions, Inc.
    Inventors: Tomoya Kodama, Shinichi Hakamada, Hironori Fukuhara, Yosuke Hamaoka
  • Publication number: 20230101360
    Abstract: An acoustic wave device is disclosed. The acoustic waved device can be a shear horizontal mode surface acoustic wave device. The acoustic wave device can include a piezoelectric layer, an interdigital transducer electrode over the piezoelectric layer, and a temperature compensation layer over the interdigital transducer electrode. The piezoelectric layer can be a lithium niobate layer with a cut angle in a range of ?20° YX to 25° YX. The interdigital transducer electrode includes a first layer having a first thickness and a second layer having a second thickness. The first layer affects acoustic properties of the acoustic wave device and the second layer affects electrical properties of the acoustic wave device. The first layer is positioned between the piezoelectric layer and the second layer. The first thickness is configured such that a frequency response of the acoustic wave device includes a Rayleigh mode response at a frequency higher than a shear horizontal mode response resonance.
    Type: Application
    Filed: September 28, 2022
    Publication date: March 30, 2023
    Inventors: Joji Fujiwara, Riho Sasaki, Kyohei Kobayashi, Noriaki Amo, Yosuke Hamaoka
  • Publication number: 20230094376
    Abstract: An acoustic wave device is disclosed. The acoustic waved device can be a shear horizontal mode surface acoustic wave device. The acoustic wave device can include a piezoelectric layer, an interdigital transducer electrode over the piezoelectric layer, and a temperature compensation layer over the interdigital transducer electrode. The piezoelectric layer can be a lithium niobate layer with a cut angle in a range of ?20° YX to 25° YX. The interdigital transducer electrode including a first layer and a second layer. The first layer affects acoustic properties of the acoustic wave device and the second layer affects electrical properties of the acoustic wave device. The second layer is positioned between the piezoelectric layer and the first layer such that a frequency response of the acoustic wave device includes a Rayleigh mode response at a frequency higher than a shear horizontal mode response.
    Type: Application
    Filed: September 28, 2022
    Publication date: March 30, 2023
    Inventors: Joji Fujiwara, Riho Sasaki, Kyohei Kobayashi, Noriaki Amo, Yosuke Hamaoka
  • Publication number: 20230048476
    Abstract: A surface acoustic wave device includes a piezoelectric substrate and a multi-layer interdigital transducer electrode disposed on the piezoelectric substrate. The multi-layer interdigital transducer electrode includes a first electrode layer and a second electrode layer. The second electrode layer is disposed between the piezoelectric substrate and the first electrode layer. The first electrode layer has a higher density than a density of the second electrode layer. The second electrode layer has a higher conductivity than a conductivity of the first electrode layer. Related radio frequency modules and wireless communication devices are also provided.
    Type: Application
    Filed: August 10, 2022
    Publication date: February 16, 2023
    Inventors: Kezia Cheng, Alan Sangone Chen, Benjamin Paul Abbott, Rei Goto, Yosuke Hamaoka, Michael David Hill
  • Patent number: 11581869
    Abstract: Aspects of this disclosure relate to bulk acoustic wave resonators. A bulk acoustic wave resonator includes a patterned mass loading layer that affects a resonant frequency of the bulk acoustic wave resonator. The patterned mass loading layer can have a duty factor in a range from 0.2 to 0.8 in a main acoustically active region of the bulk acoustic wave resonator. Related filters, acoustic wave dies, radio frequency modules, wireless communications devices, and methods are disclosed.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: February 14, 2023
    Assignee: Skyworks Global Pte. Ltd.
    Inventors: Kwang Jae Shin, Jiansong Liu, Jong Duk Han, Jae Hyung Lee, Yiliu Wang, Yosuke Hamaoka, Alexandre Augusto Shirakawa, Benfeng Zhang
  • Publication number: 20220407496
    Abstract: A acoustic wave resonator comprises a piezoelectric substrate and a plurality of interdigital transducer (IDT) electrodes disposed on the piezoelectric substrate, the plurality of IDT electrodes formed of a mixture of tungsten and chromium to provide for reduction in size and increase in quality factor of the acoustic wave resonator.
    Type: Application
    Filed: June 10, 2022
    Publication date: December 22, 2022
    Inventors: Michael David Hill, Benjamin Paul Abbott, Yosuke Hamaoka, Hiroyuki Nakamura, Alan Sangone Chen
  • Publication number: 20220103150
    Abstract: Aspects of this disclosure relate to bulk acoustic wave resonators with patterned mass loading layers. Two different bulk acoustic wave resonators of an acoustic wave filter and/or an acoustic wave die have respective patterned mass loading layers with different densities. The patterned mass loading layers contribute to the two different bulk acoustic wave resonators having different respective resonant frequencies. Related bulk acoustic wave devices, filters, acoustic wave dies, radio frequency modules, wireless communication devices, and methods are disclosed.
    Type: Application
    Filed: March 31, 2021
    Publication date: March 31, 2022
    Inventors: Kwang Jae Shin, Jiansong Liu, Jong Duk Han, Jae Hyung Lee, Yiliu Wang, Yosuke Hamaoka, Alexandre Augusto Shirakawa, Benfeng Zhang
  • Publication number: 20220103159
    Abstract: Aspects of this disclosure relate to methods of manufacturing bulk acoustic wave resonators. During a common processing step, a first patterned mass loading layer for a first bulk acoustic wave resonator is formed and a second patterned mass loading layer for a second bulk acoustic wave resonator is formed. The first patterned mass loading layer has a different density than the second patterned mass loading layer.
    Type: Application
    Filed: March 31, 2021
    Publication date: March 31, 2022
    Inventors: Kwang Jae Shin, Jiansong Liu, Jong Duk Han, Jae Hyung Lee, Yiliu Wang, Yosuke Hamaoka, Alexandre Augusto Shirakawa, Benfeng Zhang
  • Publication number: 20220103152
    Abstract: Aspects of this disclosure relate bulk acoustic wave resonators with a patterned mass loading layer at least contributing to a difference in mass loading between a main acoustically active region of the bulk acoustic wave resonator and a recessed frame region of the bulk acoustic wave resonator. Related methods of manufacturing can involve forming the patterned mass loading layer in the main acoustically active region and the recessed frame region in a common processing step such that the patterned mass loading layer has a higher density in the main acoustically active region than in the recessed frame region.
    Type: Application
    Filed: March 31, 2021
    Publication date: March 31, 2022
    Inventors: Kwang Jae Shin, Jiansong Liu, Jong Duk Han, Jae Hyung Lee, Yiliu Wang, Yosuke Hamaoka, Alexandre Augusto Shirakawa, Benfeng Zhang
  • Publication number: 20220103151
    Abstract: Aspects of this disclosure relate to bulk acoustic wave resonators. A bulk acoustic wave resonator includes a patterned mass loading layer that affects a resonant frequency of the bulk acoustic wave resonator. The patterned mass loading layer can have a duty factor in a range from 0.2 to 0.8 in a main acoustically active region of the bulk acoustic wave resonator. Related filters, acoustic wave dies, radio frequency modules, wireless communications devices, and methods are disclosed.
    Type: Application
    Filed: March 31, 2021
    Publication date: March 31, 2022
    Inventors: Kwang Jae Shin, Jiansong Liu, Jong Duk Han, Jae Hyung Lee, Yiliu Wang, Yosuke Hamaoka, Alexandre Augusto Shirakawa, Benfeng Zhang
  • Publication number: 20210344324
    Abstract: Aspects of this disclosure relate to an acoustic wave device that includes a multi-layer interdigital transducer electrode. The acoustic wave device includes a piezoelectric layer and an interdigital transducer electrode on the piezoelectric layer. The interdigital transducer electrode includes a first interdigital transducer electrode layer positioned between a second interdigital transducer electrode layer and the piezoelectric layer. The second interdigital transducer electrode layer can include aluminum and having a thickness of at least 200 nanometers. The acoustic wave device can include a temperature compensation layer arranged such that the interdigital transducer electrode is positioned between the piezoelectric layer and at least a portion of the temperature compensation layer. Related filters, modules, wireless communication devices, and methods are disclosed.
    Type: Application
    Filed: June 30, 2021
    Publication date: November 4, 2021
    Inventors: Tomoya Kodama, Shinichi Hakamada, Hironori Fukuhara, Yosuke Hamaoka
  • Publication number: 20210281239
    Abstract: Aspects of this disclosure relate to a surface acoustic wave resonator having a multi-layer substrate with heat dissipation. The multi-layer substrate includes a support substrate, a piezoelectric layer, and a thermally conductive layer configured to dissipate heat associated with the surface acoustic wave resonator. The thermally conductive layer is disposed between the support substrate and the piezoelectric layer. Related surface acoustic wave filters, radio frequency modules, and wireless communication devices are also disclosed.
    Type: Application
    Filed: May 25, 2021
    Publication date: September 9, 2021
    Inventors: Keiichi Maki, Rei Goto, Gong Bin Tang, Yosuke Hamaoka
  • Patent number: 11082029
    Abstract: Aspects of this disclosure relate to an acoustic wave device that includes a multi-layer interdigital transducer electrode. The acoustic wave device includes a piezoelectric layer and an interdigital transducer electrode on the piezoelectric layer. The interdigital transducer electrode includes a first interdigital transducer electrode layer positioned between a second interdigital transducer electrode layer and the piezoelectric layer. The second interdigital transducer electrode layer can include aluminum and having a thickness of at least 200 nanometers. The acoustic wave device can include a temperature compensation layer arranged such that the interdigital transducer electrode is positioned between the piezoelectric layer and at least a portion of the temperature compensation layer. Related filters, modules, wireless communication devices, and methods are disclosed.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: August 3, 2021
    Assignee: Skyworks Solutions, Inc.
    Inventors: Tomoya Kodama, Shinichi Hakamada, Hironori Fukuhara, Yosuke Hamaoka