Patents by Inventor Youlu Yu
Youlu Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12240964Abstract: Disclosed herein are ethylene-based polymers generally characterized by a melt index of less than 15 g/10 min, a density from 0.91 to 0.945 g/cm3, a CY-a parameter at 190° C. from 0.2 to 0.6, an average number of long chain branches per 1,000,000 total carbon atoms of the polymer in a molecular weight range of 500,000 to 2,000,000 g/mol of less than 5, and a maximum ratio of ??/3? at an extensional rate of 0.03 sec?1 in a range from 3 to 15. The ethylene polymers have substantially no long chain branching in the high molecular weight fraction of the polymer, but instead have significant long chain branching in the lower molecular weight fraction, such that polymer melt strength and bubble stability are maintained for the fabrication of blown films and other articles of manufacture.Type: GrantFiled: May 14, 2024Date of Patent: March 4, 2025Assignee: Chevron Phillips Chemical Company LPInventors: Errun Ding, Chung Ching Tso, Max P. McDaniel, Ashish M. Sukhadia, Youlu Yu, Randall S. Muninger, Aaron M. Osborn, Christopher E. Wittner
-
Publication number: 20240301185Abstract: Disclosed herein are ethylene-based polymers generally characterized by a melt index of less than 15 g/10 min, a density from 0.91 to 0.945 g/cm3, a CY-a parameter at 190° C. from 0.2 to 0.6, an average number of long chain branches per 1,000,000 total carbon atoms of the polymer in a molecular weight range of 500,000 to 2,000,000 g/mol of less than 5, and a maximum ratio of ??/3? at an extensional rate of 0.03 sec?1 in a range from 3 to 15. The ethylene polymers have substantially no long chain branching in the high molecular weight fraction of the polymer, but instead have significant long chain branching in the lower molecular weight fraction, such that polymer melt strength and bubble stability are maintained for the fabrication of blown films and other articles of manufacture.Type: ApplicationFiled: May 14, 2024Publication date: September 12, 2024Inventors: Errun Ding, Chung Ching Tso, Max P. McDaniel, Ashish M. Sukhadia, Youlu Yu, Randall S. Muninger, Aaron M. Osborn, Christopher E. Wittner
-
Patent number: 12037483Abstract: A bimodal polymer composition comprising a lower molecular weight homopolymer and a higher molecular weight copolymer wherein the bimodal polymer composition has a density of from about 0.930 gram per cubic centimeter (g/cc) to about 0.970 g/cc, a ratio of high load melt index:melt index of from about 10 to about 150 and an Environmental Stress Crack Resistance (ESCR) of from about 25 hours to about 300 hours when measured in accordance with ASTM D1693 or ASTM D2561. A chromium-catalyzed polymer composition comprising (i) a lower molecular weight homopolymer and (ii) a higher molecular weight copolymer, wherein the bimodal polymer composition has an Environmental Stress Crack Resistance (ESCR) of from about 25 hours to about 300 hours when measured in accordance with ASTM D1693 or ASTM D2561.Type: GrantFiled: March 17, 2023Date of Patent: July 16, 2024Assignee: Chevron Phillips Chemical Company LPInventors: Youlu Yu, Eric D. Schwerdtfeger, Jeffrey S. Fodor, David A. Soules
-
Patent number: 12031022Abstract: Disclosed herein are ethylene-based polymers generally characterized by a melt index of less than 15 g/10 min, a density from 0.91 to 0.945 g/cm3, a CY-a parameter at 190° C. from 0.2 to 0.6, an average number of long chain branches per 1,000,000 total carbon atoms of the polymer in a molecular weight range of 500,000 to 2,000,000 g/mol of less than 5, and a maximum ratio of ?E/3? at an extensional rate of 0.03 sec?1 in a range from 3 to 15. The ethylene polymers have substantially no long chain branching in the high molecular weight fraction of the polymer, but instead have significant long chain branching in the lower molecular weight fraction, such that polymer melt strength and bubble stability are maintained for the fabrication of blown films and other articles of manufacture.Type: GrantFiled: April 29, 2022Date of Patent: July 9, 2024Assignee: Chevron Phillips Chemical Company LPInventors: Errun Ding, Chung Ching Tso, Max P. McDaniel, Ashish M. Sukhadia, Youlu Yu, Randall S. Muninger, Aaron M. Osborn, Christopher E. Wittner
-
Patent number: 11945938Abstract: Ethylene-based polymers are characterized by a density from 0.92 to 0.955 g/cm3, a HLMI of less than 35 g/10 min, and a ratio of a number of short chain branches (SCBs) per 1000 total carbon atoms at Mz to a number of SCBs per 1000 total carbon atoms at Mn in a range from 11.5 to 22. These polymers can have a higher molecular weight (HMW) component and a lower molecular weight (LMW) component, in which a ratio of a number of SCBs per 1000 total carbon atoms at Mn of the HMW component to a number of SCBs per 1000 total carbon atoms at Mn of the LMW component is in a range from 10.5 to 22. These ethylene polymers can be produced using a dual catalyst system containing an unbridged metallocene compound with an indenyl group having at least one halogen-substituted hydrocarbyl substituent with at least two halogen atoms, and a single atom bridged metallocene compound with a fluorenyl group and a cyclopentadienyl group.Type: GrantFiled: April 20, 2023Date of Patent: April 2, 2024Assignee: Chevron Phillips Chemical Company LPInventors: Graham R. Lief, Qing Yang, Youlu Yu
-
Publication number: 20240076424Abstract: Disclosed herein are ethylene-based polymers generally characterized by a melt index of less than 1 g/10 min, a density from 0.93 to 0.965 g/cm3, a CY-a parameter at 190° C. of less than 0.2, an average number of short chain branches per 1000 total carbon atoms of the polymer in a molecular weight range of 400,000 to 600,000 g/mol that is greater than that in a molecular weight range of 40,000 to 60,000 g/mol, and an average number of long chain branches per 1000 total carbon atoms of the polymer in a molecular weight range of 400,000 to 600,000 g/mol that is greater than that in a molecular weight range of 4,000,000 to 6,000,000 g/mol.Type: ApplicationFiled: October 30, 2023Publication date: March 7, 2024Inventors: Errun Ding, Qing Yang, Randall S. Muninger, Youlu Yu, Yongwoo Inn
-
Patent number: 11859024Abstract: Ethylene-based polymers are characterized by a melt index less than 1 g/10 min, a density from 0.94 to 0.965 g/cm3, a Mw from 100,000 to 250,000 g/mol, a relaxation time from 0.5 to 3 sec, and an average number of long chain branches (LCBs) per 1,000,000 total carbon atoms in a molecular weight range of 300,000 to 900,000 g/mol that is greater than that in a molecular weight range of 1,000,000 to 2,000,000 g/mol, or an average number of LCBs per 1,000,000 total carbon atoms in a molecular weight range of 1,000,000 to 2,000,000 g/mol of less than or equal to about 5 and a maximum ratio of ?E/3? at an extensional rate of 0.1 sec?1 from 1.2 to 10. These polymers have substantially no long chain branching in the high molecular weight fraction of the polymer, but instead have significant long chain branching in a lower molecular weight fraction, such that polymer melt strength and parison stability are maintained for the fabrication of blow molded products and other articles of manufacture.Type: GrantFiled: January 10, 2022Date of Patent: January 2, 2024Assignee: Chevron Phillips Chemical Company LPInventors: Jeremy M. Praetorius, Alfred E. Brown, Jr., Yongwoo Inn, Youlu Yu, Qing Yang, Ashish M. Sukhadia
-
Publication number: 20230416419Abstract: Supported chromium catalysts containing a solid oxide and 0.1 to 15 wt. % chromium, in which the solid oxide or the supported chromium catalyst has a particle size span from 0.5 to 1.4, less than 3 wt. % has a particle size greater than 100 ?m, and less than 10 wt. % has a particle size less than 10 ?m, can be contacted with an olefin monomer in a loop slurry reactor to produce an olefin polymer. Representative ethylene-based polymers produced using the chromium catalysts have a HLMI of 4 to 70 g/10 min, a density from 0.93 to 0.96 g/cm3, from 150 to 680 ppm solid oxide (such as silica), from 1.5 to 6.8 ppm chromium, and a film gel count of less than 15 catalyst particle gels per ft2 of 25 micron thick film and/or a gel count of less than or equal to 50 catalyst particles of greater than 100 ?m per five grams of the ethylene polymer.Type: ApplicationFiled: September 8, 2023Publication date: December 28, 2023Inventors: Max P. McDaniel, Carlton E. Ash, Kathy S. Clear, Eric D. Schwerdtfeger, Carlos A. Cruz, Jeremy M. Praetorius, Youlu Yu
-
Patent number: 11851505Abstract: Disclosed herein are ethylene-based polymers generally characterized by a melt index of less than 1 g/10 min, a density from 0.93 to 0.965 g/cm3, a CY-a parameter at 190° C. of less than 0.2, an average number of short chain branches per 1000 total carbon atoms of the polymer in a molecular weight range of 400,000 to 600,000 g/mol that is greater than that in a molecular weight range of 40,000 to 60,000 g/mol, and an average number of long chain branches per 1000 total carbon atoms of the polymer in a molecular weight range of 400,000 to 600,000 g/mol that is greater than that in a molecular weight range of 4,000,000 to 6,000,000 g/mol.Type: GrantFiled: January 6, 2021Date of Patent: December 26, 2023Assignee: Chevron Phillips Chemical Company LPInventors: Errun Ding, Qing Yang, Randall S. Muninger, Youlu Yu, Yongwoo Inn
-
Patent number: 11814455Abstract: Ethylene-based polymers are generally characterized by a high load melt index of less than 12 g/10 min, a weight-average molecular weight from 200,000 to 550,000 g/mol, a number-average molecular weight from 18,000 to 48,000 g/mol, a CY-a parameter of less than 0.12, a tan ? at 0.1 sec?1 from 0.5 to 0.9 degrees, a tan ? at 100 sec?1 from 0.5 to 0.75 degrees, and a viscosity at 0.001 sec?1 from 1.3×106 to 1×107 Pa-sec. These ethylene polymers can be produced by peroxide-treating a bimodal molecular weight distribution dual metallocene-catalyzed resin, and can be used to produce blow molded bottles and other blow molded products.Type: GrantFiled: September 27, 2022Date of Patent: November 14, 2023Assignee: Chevron Phillips Chemical Company LPInventors: Carlos A. Cruz, Yongwoo Inn, John R. Rathman, Youlu Yu, Ashish M. Sukhadia, Jay M. Chaffin
-
Patent number: 11814449Abstract: Supported chromium catalysts containing a solid oxide and 0.1 to 15 wt. % chromium, in which the solid oxide or the supported chromium catalyst has a particle size span from 0.5 to 1.4, less than 3 wt. % has a particle size greater than 100 ?m, and less than 10 wt. % has a particle size less than 10 ?m, can be contacted with an olefin monomer in a loop slurry reactor to produce an olefin polymer. Representative ethylene-based polymers produced using the chromium catalysts have a HLMI of 4 to 70 g/10 min, a density from 0.93 to 0.96 g/cm3, from 150 to 680 ppm solid oxide (such as silica), from 1.5 to 6.8 ppm chromium, and a film gel count of less than 15 catalyst particle gels per ft2 of 25 micron thick film and/or a gel count of less than or equal to 50 catalyst particles of greater than 100 ?m per five grams of the ethylene polymer.Type: GrantFiled: October 13, 2022Date of Patent: November 14, 2023Assignee: Chevron Phillips Chemical Company LPInventors: Max P. McDaniel, Carlton E. Ash, Kathy S. Clear, Eric D. Schwerdtfeger, Carlos A. Cruz, Jeremy M. Praetorius, Youlu Yu
-
Publication number: 20230322973Abstract: A method of determining multimodal polyethylene quality comprising the steps of (a) providing a multimodal polyethylene resin sample; (b) determining, in any sequence, the following: that the multimodal polyethylene resin sample has a melt index within 30% of a target melt index; that the multimodal polyethylene resin sample has a density within 2.5% of a target density; that the multimodal polyethylene resin sample has a dynamic viscosity deviation (% MVD) from a target dynamic viscosity of less than about 100%; that the multimodal polyethylene resin sample has a weight average molecular weight (Mw) deviation (% MwD) from a target Mw of less than about 20%; and that the multimodal polyethylene resin sample has a gel permeation chromatography (GPC) curve profile deviation (% GPCD) from a target GPC curve profile of less than about 15%; and (c) responsive to step (b), designating the multimodal polyethylene resin sample as a high quality resin.Type: ApplicationFiled: June 12, 2023Publication date: October 12, 2023Inventors: Youlu Yu, Paul J. DesLauriers, Yongwoo Inn
-
Publication number: 20230272197Abstract: Ethylene-based polymers are characterized by a density from 0.92 to 0.955 g/cm3, a HLMI of less than 35 g/10 min, and a ratio of a number of short chain branches (SCBs) per 1000 total carbon atoms at Mz to a number of SCBs per 1000 total carbon atoms at Mn in a range from 11.5 to 22. These polymers can have a higher molecular weight (HMW) component and a lower molecular weight (LMW) component, in which a ratio of a number of SCBs per 1000 total carbon atoms at Mn of the HMW component to a number of SCBs per 1000 total carbon atoms at Mn of the LMW component is in a range from 10.5 to 22. These ethylene polymers can be produced using a dual catalyst system containing an unbridged metallocene compound with an indenyl group having at least one halogen-substituted hydrocarbyl substituent with at least two halogen atoms, and a single atom bridged metallocene compound with a fluorenyl group and a cyclopentadienyl group.Type: ApplicationFiled: April 20, 2023Publication date: August 31, 2023Inventors: Graham R. Lief, Qing Yang, Youlu Yu
-
Patent number: 11708433Abstract: A method of determining multimodal polyethylene quality comprising the steps of (a) providing a multimodal polyethylene resin sample; (b) determining, in any sequence, the following: that the multimodal polyethylene resin sample has a melt index within 30% of a target melt index; that the multimodal polyethylene resin sample has a density within 2.5% of a target density; that the multimodal polyethylene resin sample has a dynamic viscosity deviation (% MVD) from a target dynamic viscosity of less than about 100%; that the multimodal polyethylene resin sample has a weight average molecular weight (Mw) deviation (% MwD) from a target Mw of less than about 20%; and that the multimodal polyethylene resin sample has a gel permeation chromatography (GPC) curve profile deviation (% GPCD) from a target GPC curve profile of less than about 15%; and (c) responsive to step (b), designating the multimodal polyethylene resin sample as a high quality resin.Type: GrantFiled: May 14, 2021Date of Patent: July 25, 2023Assignee: Chevron Phillips Chemical Company LPInventors: Youlu Yu, Paul J. DesLauriers, Yongwoo Inn
-
Publication number: 20230227638Abstract: A bimodal polymer composition comprising a lower molecular weight homopolymer and a higher molecular weight copolymer wherein the bimodal polymer composition has a density of from about 0.930 gram per cubic centimeter (g/cc) to about 0.970 g/cc, a ratio of high load melt index:melt index of from about 10 to about 150 and an Environmental Stress Crack Resistance (ESCR) of from about 25 hours to about 300 hours when measured in accordance with ASTM D1693 or ASTM D2561. A chromium-catalyzed polymer composition comprising (i) a lower molecular weight homopolymer and (ii) a higher molecular weight copolymer, wherein the bimodal polymer composition has an Environmental Stress Crack Resistance (ESCR) of from about 25 hours to about 300 hours when measured in accordance with ASTM D1693 or ASTM D2561.Type: ApplicationFiled: March 17, 2023Publication date: July 20, 2023Inventors: Youlu YU, Eric D. SCHWERDTFEGER, Jeffrey S. FODOR, David A. SOULES
-
Publication number: 20230227592Abstract: Ethylene-based polymers having a density from 0.94 to 0.96 g/cm3, a Mn from 5,000 to 14,000 g/mol, a ratio of Mw/Mn from 18 to 40, and at least one of a PENT value at 2.4 MPa of at least 11,500 hr and/or a W90 from 7.5 to 15 wt. % are disclosed. Additional ethylene polymers can have the same density, Mn, and Mw/Mn values, as well as a relaxation time from 0.5 to 3.5 sec, a CY-a parameter from 0.48 to 0.68, a HLMI from 5 to 11 g/10 min, a viscosity at HLMI from 3,000 to 7,500 Pa-sec, and a higher molecular weight component (HMW) and a lower molecular weight (LMW) component, in which a ratio of the number of SCBs at Mp of the HMW component to the number of SCBs at Mp of the LMW component is from 3.5 to 8.Type: ApplicationFiled: January 14, 2022Publication date: July 20, 2023Inventors: Youlu YU, Qing YANG, Ashish M. SUKHADIA, David A. SOULES, Jeremy M. PRAETORIUS, Vivek ROHATGI
-
Patent number: 11674023Abstract: A bimodal polymer composition comprising a lower molecular weight homopolymer and a higher molecular weight copolymer wherein the bimodal polymer composition has a density of from about 0.930 gram per cubic centimeter (g/cc) to about 0.970 g/cc, a ratio of high load melt index:melt index of from about 10 to about 150 and an Environmental Stress Crack Resistance (ESCR) of from about 25 hours to about 300 hours when measured in accordance with ASTM D1693 or ASTM D2561. A chromium-catalyzed polymer composition comprising (i) a lower molecular weight homopolymer and (ii) a higher molecular weight copolymer, wherein the bimodal polymer composition has an Environmental Stress Crack Resistance (ESCR) of from about 25 hours to about 300 hours when measured in accordance with ASTM D1693 or ASTM D2561.Type: GrantFiled: October 15, 2020Date of Patent: June 13, 2023Assignee: Chevron Phillips Chemical Company LPInventors: Youlu Yu, Eric D. Schwerdtfeger, Jeffrey S. Fodor, David A. Soules
-
Patent number: 11667777Abstract: Ethylene-based polymers are characterized by a density from 0.92 to 0.955 g/cm3, a HLMI of less than 35 g/10 min, and a ratio of a number of short chain branches (SCBs) per 1000 total carbon atoms at Mz to a number of SCBs per 1000 total carbon atoms at Mn in a range from 11.5 to 22. These polymers can have a higher molecular weight (HMW) component and a lower molecular weight (LMW) component, in which a ratio of a number of SCBs per 1000 total carbon atoms at Mn of the HMW component to a number of SCBs per 1000 total carbon atoms at Mn of the LMW component is in a range from 10.5 to 22. These ethylene polymers can be produced using a dual catalyst system containing an unbridged metallocene compound with an indenyl group having at least one halogen-substituted hydrocarbyl substituent with at least two halogen atoms, and a single atom bridged metallocene compound with a fluorenyl group and a cyclopentadienyl group.Type: GrantFiled: January 28, 2021Date of Patent: June 6, 2023Assignee: Chevron Phillips Chemical Company LPInventors: Graham R. Lief, Qing Yang, Youlu Yu
-
Publication number: 20230121415Abstract: Supported chromium catalysts containing a solid oxide and 0.1 to 15 wt. % chromium, in which the solid oxide or the supported chromium catalyst has a particle size span from 0.5 to 1.4, less than 3 wt. % has a particle size greater than 100 ?m, and less than 10 wt. % has a particle size less than 10 ?m, can be contacted with an olefin monomer in a loop slurry reactor to produce an olefin polymer. Representative ethylene-based polymers produced using the chromium catalysts have a HLMI of 4 to 70 g/10 min, a density from 0.93 to 0.96 g/cm3, from 150 to 680 ppm solid oxide (such as silica), from 1.5 to 6.8 ppm chromium, and a film gel count of less than 15 catalyst particle gels per ft2 of 25 micron thick film and/or a gel count of less than or equal to 50 catalyst particles of greater than 100 ?m per five grams of the ethylene polymer.Type: ApplicationFiled: October 13, 2022Publication date: April 20, 2023Inventors: Max P. McDaniel, Carlton E. Ash, Kathy S. Clear, Eric D. Schwerdtfeger, Carlos A. Cruz, Jeremy M. Praetorius, Youlu Yu
-
Publication number: 20230019739Abstract: Ethylene-based polymers are generally characterized by a high load melt index of less than 12 g/10 min, a weight-average molecular weight from 200,000 to 550,000 g/mol, a number-average molecular weight from 18,000 to 48,000 g/mol, a CY-a parameter of less than 0.12, a tan ? at 0.1 sec-1 from 0.5 to 0.9 degrees, a tan ? at 100 sec-1 from 0.5 to 0.75 degrees, and a viscosity at 0.001 sec-1 from 1.3 x 106 to 1 x 107 Pa-sec. These ethylene polymers can be produced by peroxide-treating a bimodal molecular weight distribution dual metallocene-catalyzed resin, and can be used to produce blow molded bottles and other blow molded products.Type: ApplicationFiled: September 27, 2022Publication date: January 19, 2023Inventors: Carlos A. Cruz, Yongwoo Inn, John R. Rathman, Youlu Yu, Ashish M. Sukhadia, Jay M. Chaffin