Patents by Inventor Younes Achkire

Younes Achkire has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11844637
    Abstract: A self-shielded and computer controlled system for performing non-invasive stereotactic radiosurgery and precision radiotherapy using a linear accelerator mounted within a two degree-of-freedom radiation shield coupled to a three-degree of freedom patient table is provided. The radiation shield can include an axial shield rotatable about an axial axis and an oblique shield independently rotatable about an oblique axis, thereby providing improved range of trajectories of the therapeutic and diagnostic radiation beams. Such shields can be balanced about their respective axes of rotation and about a common support structure to facilitate ease of movement. Such systems can further include an imaging system to accurately deliver radiation to the treatment target and automatically make corrections needed to maintain the anatomical target at the system isocenter.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: December 19, 2023
    Assignee: Zap Surgical Systems, Inc.
    Inventors: Cesare Jenkins, Younes Achkire, Raymond Wilbur, John Adler, Manoocher Birang, Radhika Mohan Bodduluri, Hui Zhang, Tom McDermott, Chris Lee, Kaustubh Sonawale
  • Patent number: 11826582
    Abstract: Devices, systems and method that allow for delivery of therapeutic radiation beams of differing sizes or shapes during a radiation treatment are provided herein. Such devices can include a rotatable collimator body having multiple collimator channels of differing size or shape defined therein, the channels extending through the collimator body substantially perpendicular to the axis of rotation. The collimator body can include markers thereon to facilitate detection of an alignment position by a sensor of a control system to allow the collimator body to be rapidly and accurately moved between alignment positions to facilitate delivery of differing therapy beams during a treatment.
    Type: Grant
    Filed: May 6, 2021
    Date of Patent: November 28, 2023
    Assignee: Zap Surgical Systems, Inc.
    Inventors: Raymond Wilbur, Younes Achkire, Manoocher Birang
  • Patent number: 11684320
    Abstract: An x-ray system for at least one of breast examinations and procedures includes a base component, a table configured to support a patient in a prone position and disposed proximate to the base component with a space reserved therebetween, a rotatable x-ray assembly disposed between the base component and the table, and a linear motor assembly operatively connected to the rotatable x-ray assembly and the base component so as to effect rotation of the rotatable x-ray assembly relative to the base component during operation. The rotatable x-ray assembly rotates at least partially around an active spatial region, and the table defines an opening that is positioned for a breast to extend downwards therethrough at least partially into said active spatial region.
    Type: Grant
    Filed: September 12, 2022
    Date of Patent: June 27, 2023
    Assignee: Izotropic Corporation
    Inventor: Younes Achkire
  • Patent number: 11540789
    Abstract: A system for breast computed tomography includes a table supporting a patient in a prone position with an opening positioned for a breast of the patient to extend downwards therethrough, a gantry assembly positioned beneath the table with a platform driven to rotate by a motor, an x-ray source assembly coupled to the platform to rotate therewith and positioned to irradiate with an x-ray beam at least a portion of the breast, and a detector assembly coupled to the platform to rotate therewith and positioned to receive the x-ray beam from the x-ray source assembly. The system includes a shielding enclosure rigidly mounted atop the platform to rotate therewith, enclosing during rotation of the platform the detector assembly, the breast, and the x-ray beam, and having walls composed of a material and a thickness to attenuate an x-ray beam of a predetermined energy and intensity by a predetermined amount.
    Type: Grant
    Filed: April 22, 2022
    Date of Patent: January 3, 2023
    Assignees: Izotropic Corporation, The Resents of the University of California
    Inventors: John M. Boone, John McGraw, Andrew M. Hernandez, Younes Achkire
  • Publication number: 20210369217
    Abstract: A self-shielded and computer controlled system for performing non-invasive stereotactic radiosurgery and precision radiotherapy using a linear accelerator mounted within a two degree-of-freedom radiation shield coupled to a three-degree of freedom patient table is provided. The radiation shield can include an axial shield rotatable about an axial axis and an oblique shield independently rotatable about an oblique axis, thereby providing improved range of trajectories of the therapeutic and diagnostic radiation beams. Such shields can be balanced about their respective axes of rotation and about a common support structure to facilitate ease of movement. Such systems can further include an imaging system to accurately deliver radiation to the treatment target and automatically make corrections needed to maintain the anatomical target at the system isocenter.
    Type: Application
    Filed: August 10, 2021
    Publication date: December 2, 2021
    Applicant: Zap Surgical Systems, Inc.
    Inventors: Younes Achkire, Raymond Wilbur, John Adler, Manoocher Birang, Radhika Mohan Bodduluri, Hui Zhang, Tom McDermott, Chris Lee, Kaustubh Sonawale, Cesare Jenkins
  • Publication number: 20210322790
    Abstract: Devices, systems and method that allow for delivery of therapeutic radiation beams of differing sizes or shapes during a radiation treatment are provided herein. Such devices can include a rotatable collimator body having multiple collimator channels of differing size or shape defined therein, the channels extending through the collimator body substantially perpendicular to the axis of rotation. The collimator body can include markers thereon to facilitate detection of an alignment position by a sensor of a control system to allow the collimator body to be rapidly and accurately moved between alignment positions to facilitate delivery of differing therapy beams during a treatment.
    Type: Application
    Filed: May 6, 2021
    Publication date: October 21, 2021
    Applicant: Zap Surgical Operations, Inc.
    Inventors: Raymond Wilbur, Younes Achkire, Manoocher Birang
  • Patent number: 11058892
    Abstract: Devices, systems and method that allow for delivery of therapeutic radiation beams of differing sizes or shapes during a radiation treatment are provided herein. Such devices can include a rotatable collimator body having multiple collimator channels of differing size or shape defined therein, the channels extending through the collimator body substantially perpendicular to the axis of rotation. The collimator body can include markers thereon to facilitate detection of an alignment position by a sensor of a control system to allow the collimator body to be rapidly and accurately moved between alignment positions to facilitate delivery of differing therapy beams during a treatment.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: July 13, 2021
    Assignee: Zap Surgical Systems, Inc.
    Inventors: Raymond Wilbur, Younes Achkire, Manoocher Birang
  • Publication number: 20200146640
    Abstract: A self-shielded and computer controlled system for performing non-invasive stereotactic radiosurgery and precision radiotherapy using a linear accelerator mounted within a two degree-of-freedom radiation shield coupled to a three-degree of freedom patient table is provided. The radiation shield can include an axial shield rotatable about an axial axis and an oblique shield independently rotatable about an oblique axis, thereby providing improved range of trajectories of the therapeutic and diagnostic radiation beams. Such shields can be balanced about their respective axes of rotation and about a common support structure to facilitate ease of movement. Such systems can further include an imaging system to accurately deliver radiation to the treatment target and automatically make corrections needed to maintain the anatomical target at the system isocenter.
    Type: Application
    Filed: November 12, 2019
    Publication date: May 14, 2020
    Applicant: Zap Surgical Systems, Inc.
    Inventors: Younes Achkire, Raymond Wilbur, John Adler, Manoocher Birang, Radhika Mohan Bodduluri, Hui Zhang, Tom McDermott, Chris Lee, Kaustubh Sonawale, Cesare Jenkins
  • Patent number: 10499861
    Abstract: A self-shielded and computer controlled system for performing non-invasive stereotactic radiosurgery and precision radiotherapy using a linear accelerator mounted within a two degree-of-freedom radiation shield coupled to a three-degree of freedom patient table is provided. The radiation shield can include an axial shield rotatable about an axial axis and an oblique shield independently rotatable about an oblique axis, thereby providing improved range of trajectories of the therapeutic and diagnostic radiation beams. Such shields can be balanced about their respective axes of rotation and about a common support structure to facilitate ease of movement. Such systems can further include an imaging system to accurately deliver radiation to the treatment target and automatically make corrections needed to maintain the anatomical target at the system isocenter.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: December 10, 2019
    Assignee: Zap Surgical Systems, Inc.
    Inventors: Younes Achkire, Raymond Wilbur, John Adler, Manoocher Birang, Radhika Mohan Bodduluri, Hui Zhang, Tom McDermott, Chris Lee, Kaustubh Sonawale, Cesare Jenkins
  • Publication number: 20190069856
    Abstract: A self-shielded and computer controlled system for performing non-invasive stereotactic radiosurgery and precision radiotherapy using a linear accelerator mounted within a two degree-of-freedom radiation shield coupled to a three-degree of freedom patient table is provided. The radiation shield can include an axial shield rotatable about an axial axis and an oblique shield independently rotatable about an oblique axis, thereby providing improved range of trajectories of the therapeutic and diagnostic radiation beams. Such shields can be balanced about their respective axes of rotation and about a common support structure to facilitate ease of movement. Such systems can further include an imaging system to accurately deliver radiation to the treatment target and automatically make corrections needed to maintain the anatomical target at the system isocenter.
    Type: Application
    Filed: September 6, 2018
    Publication date: March 7, 2019
    Inventors: Younes Achkire, Raymond Wilbur, John Adler, Manoocher Birang, Radhika Mohan Bodduluri, Hui Zhang, Tom McDermott, Chris Lee, Kaustubh Sonawale, Cesare Jenkins
  • Publication number: 20180318607
    Abstract: Devices, systems and method that allow for delivery of therapeutic radiation beams of differing sizes or shapes during a radiation treatment are provided herein. Such devices can include a rotatable collimator body having multiple collimator channels of differing size or shape defined therein, the channels extending through the collimator body substantially perpendicular to the axis of rotation. The collimator body can include markers thereon to facilitate detection of an alignment position by a sensor of a control system to allow the collimator body to be rapidly and accurately moved between alignment positions to facilitate delivery of differing therapy beams during a treatment.
    Type: Application
    Filed: May 4, 2018
    Publication date: November 8, 2018
    Inventors: Raymond Wilbur, Younes Achkire, Manush Birang
  • Patent number: 8322045
    Abstract: In one aspect, a substrate processing apparatus is provided. The apparatus comprises a mechanism for forming a meniscus on a surface of a substrate by moving the substrate through a fluid; an air knife apparatus positioned to apply an air knife to shorten the meniscus formed on the surface of the substrate; and a drying vapor nozzle positioned to direct a drying vapor to the meniscus shortened by the air knife. Numerous other aspects are provided.
    Type: Grant
    Filed: October 12, 2008
    Date of Patent: December 4, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Nathan D. Stein, Younes Achkire, Timothy J. Franklin, Julia Svirchevski, Dan A. Marohl
  • Patent number: 7980255
    Abstract: In a first aspect, a module is provided that is adapted to process a wafer. The module includes a processing portion having one or more features such as (1) a rotatable wafer support for rotating an input wafer from a first orientation wherein the wafer is in line with a load port to a second orientation wherein the wafer is in line with an unload port; (2) a catcher adapted to contact and travel passively with a wafer as it is unloaded from the processing portion; (3) an enclosed output portion adapted to create a laminar air flow from one side thereof to the other; (4) an output portion having a plurality of wafer receivers; (5) submerged fluidnozzles; and/or (6) drying gas flow deflectors, etc. Other aspects include methods of wafer processing.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: July 19, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Younes Achkire, Alexander Lerner, Boris T. Govzman, Boris Fishkin, Michael Sugarman, Rashid Mavleiv, Haoquan Fang, Shijian Li, Guy Shirazi, Jianshe Tang
  • Patent number: 7774887
    Abstract: A scrubber box is provided that includes a tank adapted to receive a substrate for cleaning, supports outside of the tank and adapted to couple to ends of scrubber brushes disposed within the tank, a motor mounted to each of the supports and adapted to rotate the scrubber brushes, a base to which the supports are pivotally mounted via spherical bearings adapted to permit toe-in of the scrubber brushes, a brush gap actuator adapted, via a crank and rocker mechanism, to substantially simultaneously pivot the supports toward or away from each other so as to permit the scrubber brushes to substantially simultaneously achieve or break contact with the substrate, and a toe-in actuator adapted to move two of the spherical bearings toward or away from each other so as to adjust a toe-in angle between the scrubber brushes.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: August 17, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Joseph Yudovsky, Avi Tepman, Kenneth R. Reynolds, Younes Achkire, Dan A. Marohl, Steve G. Ghanayem, Alexander S. Polyak, Gary Ettinger, Haochuan Zhang, Hui Chen
  • Publication number: 20100006124
    Abstract: In a first aspect, a module is provided that is adapted to process a wafer. The module includes a processing portion having one or more features such as (1) a rotatable wafer support for rotating an input wafer from a first orientation wherein the wafer is in line with a load port to a second orientation wherein the wafer is in line with an unload port; (2) a catcher adapted to contact and travel passively with a wafer as it is unloaded from the processing portion; (3) an enclosed output portion adapted to create a laminar air flow from one side thereof to the other; (4) an output portion having a plurality of wafer receivers; (5) submerged fluid nozzles; and/or (6) drying gas flow deflectors, etc. Other aspects include methods of wafer processing.
    Type: Application
    Filed: December 29, 2008
    Publication date: January 14, 2010
    Inventors: Younes Achkire, Alexander Lerner, Boris T. Govzman, Boris Fishkin, Michael Sugarman, Rashid Mavleiv, Hoaquan Fang, Shijian Li, Guy Shirazi, Jianshe Tang
  • Publication number: 20090241996
    Abstract: In a first aspect, a module is provided that is adapted to process a wafer. The module includes a processing portion having one or more features such as (1) a rotatable wafer support for rotating an input wafer from a first orientation wherein the wafer is in line with a load port to a second orientation wherein the wafer is in line with an unload port; (2) a catcher adapted to contact and travel passively with a wafer as it is unloaded from the processing portion; (3) an enclosed output portion adapted to create a laminar air flow from one side thereof to the other; (4) an output portion having a plurality of wafer receivers; (5) submerged fluid nozzles; and/or (6) drying gas flow deflectors, etc. Other aspects include methods of wafer processing.
    Type: Application
    Filed: December 29, 2008
    Publication date: October 1, 2009
    Inventors: Younes Achkire, Alexander N. Lerner, Boris I. Govzman, Boris Fishkin, Michael N. Sugarman, Rashid A. Mavliev, Haoquan Fang, Shijian Li, Guy E. Shirazi, Jianshe Tang
  • Patent number: 7513062
    Abstract: In a first aspect, a first method of drying a substrate is provided. The first method includes the steps of (1) lifting a substrate through an air/fluid interface at a first rate; (2) directing a drying vapor at the air/fluid interface during lifting of the substrate; and (3) while a portion of the substrate remains in the air/fluid interface, reducing a rate at which a remainder of the substrate is lifted through the air/fluid interface to a second rate. The drying vapor may form an angle of about 23° with the air/fluid interface and/or the second rate may be about 2.5 mm/sec.
    Type: Grant
    Filed: February 9, 2005
    Date of Patent: April 7, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Younes Achkire, Alexander N Lerner, Boris Govzman, Boris Fishkin, Michael N Sugarman, Rashid A Mavliev, Haoquan Fang, Shijian Li, Guy E Shirazi, Jianshe Tang
  • Publication number: 20090078292
    Abstract: In one aspect, an apparatus is provided. The apparatus comprises a chamber; a plurality of rollers adapted to support a wafer in a vertical orientation within a chamber; a pair of brushes adapted to scrub a first and a second side of the wafer respectively; a first spray bar adapted to spray a liquid on the wafer to form a meniscus on the wafer as the wafer is lifted out of the chamber; and a second spray bar adapted to direct a vapor to the meniscus, the vapor being adapted to lower a surface tension of the liquid at the meniscus to perform Marangoni drying of the wafer as the wafer is lifted out of the chamber. Numerous other aspects are provided.
    Type: Application
    Filed: October 12, 2008
    Publication date: March 26, 2009
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Nathan D. Stein, Younes Achkire, Timothy J. Franklin, Julia Svirchevski, Dan A. Marohl
  • Publication number: 20090044839
    Abstract: In one aspect, a substrate processing apparatus is provided. The apparatus comprises a mechanism for forming a meniscus on a surface of a substrate by moving the substrate through a fluid; an air knife apparatus positioned to apply an air knife to shorten the meniscus formed on the surface of the substrate; and a drying vapor nozzle positioned to direct a drying vapor to the meniscus shortened by the air knife. Numerous other aspects are provided.
    Type: Application
    Filed: October 12, 2008
    Publication date: February 19, 2009
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Nathan D. Stein, Younes Achkire, Timothy J. Franklin, Julia Svirchevski, Dan A. Marohl
  • Patent number: D843582
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: March 19, 2019
    Assignee: Zap Surgical Systems, Inc.
    Inventors: John Adler, Younes Achkire, Yun-Yi Ting, Ying-Jhang Chen, Cheng-Chieh Tsai, Tzu-Cheng Yu, Mark Brinkerhoff, Thomas Hopmans, Radhika Mohan Bodduluri, Ron Boeder, Thomas McDermott, Jin-Wu Wang, Kaustubh Sonawale