Patents by Inventor Young-Ahn Leem

Young-Ahn Leem has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8213478
    Abstract: Provided is a laser device. In the laser device, an active layer is connected to a stem core of a 1×2 splitter on a substrate, a first diffraction grating is coupled to a first twig core of the 1×2 splitter, and a second diffraction grating is coupled to a second twig core of the 1×2 splitter. An active layer-micro heater is designed to supply heat to the active layer. First and second micro heaters are designed to supply heats to the first and second diffraction gratings, respectively, thereby varying a Bragg wavelength.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: July 3, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Kyung Hyun Park, Namje Kim, Young Ahn Leem, Sang-Pil Han, Chul-Wook Lee, Jaeheon Shin, Eundeok Sim, Yongsoon Baek
  • Publication number: 20120163821
    Abstract: Provided is a multi-wavelength optical source generator. The multi-wavelength optical source generator includes: a gain part generating a plurality of lights through a plurality of gain waveguides; a reflective part transmitting or reflecting lights provided from each of the plurality of gain waveguides according to a wavelength; and a multiplexing part multiplexing a plurality of lights transmitted and outputted through the reflective part.
    Type: Application
    Filed: December 14, 2011
    Publication date: June 28, 2012
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Oh-Kee KWON, Chul-Wook Lee, Dong-Hun Lee, Young Ahn Leem, Yongsoon Baek
  • Publication number: 20120153161
    Abstract: Provided are a THz-wave generation/detection module and a device including the same, which increase heating efficiency and are miniaturized. The module includes a photomixer chip, a lens, a PCB, and a package. The photomixer chip includes an active layer, an antenna, and a plurality of electrode pads. The lens is disposed on the photomixer chip. The PCB includes a plurality of solder balls connected to the electrode pads, under the photomixer chip. The package surrounds a bottom and side of the PCB, and dissipates heating of the active layer, which is transferred from the electrode pad of the photomixer chip to the PCB, to outside.
    Type: Application
    Filed: December 2, 2011
    Publication date: June 21, 2012
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Sang-Pil Han, Kyung Hyun Park, Hyunsung Ko, Namje Kim, Chul-Wook Lee, Dong-Hun Lee, Young Ahn Leem
  • Publication number: 20120147907
    Abstract: Disclosed is a terahertz wave generator which includes a dual mode semiconductor laser device configured to generate at least two laser lights having different wavelengths and to beat the generated laser lights; and a photo mixer formed on the same chip as the dual mode semiconductor laser device and to generate a continuous terahertz wave when excited by the beat laser light.
    Type: Application
    Filed: September 6, 2011
    Publication date: June 14, 2012
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Namje KIM, Kyung Hyun PARK, Young Ahn LEEM, Hyunsung KO, Sang-Pil HAN, Chul-Wook LEE, Dong-Hun LEE
  • Publication number: 20120087004
    Abstract: Provided is an optical comb generator including a light source, a first waveguide region, a modulation region, and a second waveguide region. The light source is configured to output single-mode light. The first waveguide region divides an output of the light source into first light and second light. The modulation region includes a first modulator and a second modulator modulating the first light and the second light respectively. The second waveguide region combines outputs of the first modulator and the second modulator to output an optical comb. Here, the first modulator and the second modulator respectively include a first quantum well and a second quantum well having an asymmetric structure with respect to each other. The light source, the first waveguide region, the modulation region, and the second waveguide region are integrated into one substrate.
    Type: Application
    Filed: February 1, 2011
    Publication date: April 12, 2012
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Oh-Kee KWON, Chul-Wook Lee, Dong-Hun Lee, Young Ahn Leem, Young-Tak Han, Yongsoon Baek
  • Patent number: 8149890
    Abstract: Provided is a multiple distributed feedback laser device which includes a first distributed feedback region, a modulation region, a second distributed feedback region, and an amplification region. An active layer is disposed on the substrate of the first distributed feedback region, the modulation region, the second distributed feedback region, and the amplification region. A first diffraction grating is disposed in the first distributed feedback region to be coupled to the active layer in the first distributed feedback region. A second diffraction grating is disposed in the second distributed feedback region to be coupled to the active layer in the second distributed feedback region. The multiple distributed feedback laser device further includes a first micro heater configured to supply heat to the first diffraction grating and a second micro heater configured to supply heat to the second diffraction grating.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: April 3, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Kyung Hyun Park, Namje Kim, Young Ahn Leem, Sang-Pil Han, Hyunsung Ko, Chul-Wook Lee, Dong-Hun Lee, Jaeheon Shin, Eundeok Sim, Yongsoon Baek
  • Publication number: 20120051386
    Abstract: Provided are a dual mode semiconductor laser and a terahertz wave apparatus using the same. The dual mode semiconductor laser includes a distributed feedback laser structure section including a first diffraction grating on a substrate and a distributed Bragg reflector laser structure section including a second diffraction grating on the substrate. A first wavelength oscillated by the distributed feedback laser structure section and a second wavelength oscillated by the distributed Bragg reflector laser structure section are different from each other, and the distributed feedback laser structure section and the distributed Bragg reflector laser structure section share the same gain medium with each other.
    Type: Application
    Filed: February 8, 2011
    Publication date: March 1, 2012
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Namje KIM, Kyung Hyun PARK, Young Ahn LEEM, Chul-Wook LEE, Sang-Pil HAN, Dong-Hun LEE, Min Yong JEON
  • Patent number: 7995625
    Abstract: Provided is a resonator of a hybrid laser diode. The resonator includes: a substrate including a semiconductor layer where a hybrid waveguide, a multi-mode waveguide, and a single mode waveguide are connected in series; a compound semiconductor waveguide, provided on the hybrid waveguide of the semiconductor layer, having a tapered coupling structure at one end of the compound semiconductor waveguide, the tapered coupling structure overlapping the multi-mode waveguide partially; and a reflection part provided on one end of the single mode waveguide. The multi-mode waveguide has a narrower width than the hybrid waveguide and the single mode waveguide has a narrower width than the multi-mode waveguide.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: August 9, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Young Ahn Leem, Jung-Ho Song, Kisoo Kim, Gyungock Kim
  • Patent number: 7974326
    Abstract: Provided are a hybrid laser diode for single mode operation, and a method for manufacturing the hybrid laser diode. The hybrid laser diode includes a silicon layer, an active pattern disposed on the silicon layer, and a bonding layer disposed between the silicon layer and the active pattern. Here, the bonding layer includes diffraction patterns constituting a Bragg grating.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: July 5, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Young-Ahn Leem, Ki-Soo Kim, Jung-Ho Song, O-Kyun Kwon, Gyung-Ock Kim
  • Publication number: 20110149368
    Abstract: Provided are a photomixer module and a method of generating a terahertz wave. The photomixer module includes a semiconductor optical amplifier amplifying incident laser light and a photomixer that is excited by the amplified laser light to generate a continuous terahertz wave. The photomixer is formed as a single module together with the semiconductor optical amplifier.
    Type: Application
    Filed: May 26, 2010
    Publication date: June 23, 2011
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Namje KIM, Kyung Hyun Park, Young Ahn Leem, Sang-Pil Han, Chul-Wook Lee, Eundeok Sim, Jaeheon Shin
  • Publication number: 20110150018
    Abstract: Provided is a laser device. In the laser device, an active layer is connected to a stem core of a 1×2 splitter on a substrate, a first diffraction grating is coupled to a first twig core of the 1×2 splitter, and a second diffraction grating is coupled to a second twig core of the 1×2 splitter. An active layer-micro heater is designed to supply heat to the active layer. First and second micro heaters are designed to supply heats to the first and second diffraction gratings, respectively, thereby varying a Bragg wavelength.
    Type: Application
    Filed: August 13, 2010
    Publication date: June 23, 2011
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Kyung Hyun PARK, Namje Kim, Young Ahn Leem, Sang-Pil Han, Chul-Wook Lee, Jaeheon Shin, Eundeok Sim, Yongsoon Baek
  • Publication number: 20110142082
    Abstract: Provided is a fiber laser generating Terahertz wave. The fiber laser comprises: a light source generating a laser beam as a pump light; first and second resonators first and second resonators first and second resonators resonating the laser beam into first and second wavelengths; and a coupler separating and supplying the laser beam generated in the light source to the first and second resonators and again feeding back the laser beam having the first and second wavelengths resonated respectively in the first and second resonators to the light source.
    Type: Application
    Filed: October 20, 2010
    Publication date: June 16, 2011
    Applicant: ELECTRONIC AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Min Yong JEON, Kyung Hyun Park, Namje Kim, Young Ahn Leem, Sang-Pil Han, Yongsoon Baek, Jaeheon Shin
  • Patent number: 7933524
    Abstract: Provided are an apparatus for and a method of generating millimeter waves, in which millimeter-wave generation and frequency up-conversion can be achieved at the same time using a single device. The apparatus includes a mode-locking laser diode (LD) which has a distributed feedback (DFB) sector and a gain sector and generates high-frequency optical pulses through a passive mode locking process, a modulator which modulates an external optical signal using an electric signal and injects the modulated optical signal to the mode-locking LD to lock the optical pulses, and a radio frequency (RF) locking signaling unit which injects the electric signal to the modulator.
    Type: Grant
    Filed: August 8, 2006
    Date of Patent: April 26, 2011
    Assignees: Electronics and Telecommunications Research Institute, Industry-Academic Cooperation Foundation, Yonsei-University
    Inventors: Kyung Hyun Park, Young Ahn Leem, Kwang Hyun Lee, Woo Young Choi
  • Publication number: 20110090932
    Abstract: Provided is a multiple distributed feedback laser device which includes a first distributed feedback region, a modulation region, a second distributed feedback region, and an amplification region. An active layer is disposed on the substrate of the first distributed feedback region, the modulation region, the second distributed feedback region, and the amplification region. A first diffraction grating is disposed in the first distributed feedback region to be coupled to the active layer in the first distributed feedback region. A second diffraction grating is disposed in the second distributed feedback region to be coupled to the active layer in the second distributed feedback region. The multiple distributed feedback laser device further includes a first micro heater configured to supply heat to the first diffraction grating and a second micro heater configured to supply heat to the second diffraction grating.
    Type: Application
    Filed: December 29, 2010
    Publication date: April 21, 2011
    Inventors: Kyung Hyun PARK, Namje Kim, Young Ahn Leem, Sang-Pil Han, Hyunsung Ko, Chul-Wook Lee, Dong-Hun Lee, Jaeheon Shin, Eundeok Sim, Yongsoon Baek
  • Patent number: 7924492
    Abstract: Provided is an optical device having an edge effect with improved phase shift and propagation loss of light without decreasing the dynamic characteristics of the optical device. The optical device includes a first semiconductor layer which is doped with a first type of conductive impurities, and has a recessed groove in an upper portion thereof; a gate insulating layer covering the groove and a portion of the first semiconductor layer; and a second semiconductor layer which covers an upper surface of the gate insulating layer and is doped with a second type of conductive impurities opposite to the first type of conductive impurities.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: April 12, 2011
    Assignee: Electronics & Telecommunications Research Institute
    Inventors: Hyun-Soo Kim, Jeong-Woo Park, Bongki Mheen, Young-Ahn Leem, Gyungock Kim
  • Patent number: 7813388
    Abstract: Provided is a self-pulsating laser diode including: a distributed feedback (DFB) section serving as a reflector; a gain section connected to the DFB section and having an as-cleaved facet at one end; a phase control section interposed between the DFB section and the gain section; and an external radio frequency (RF) input portion applying an external RF signal to at least one of the DFB section and the gain section.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: October 12, 2010
    Assignee: Electronics And Telecommunications Research Institute
    Inventors: Kyung Hyun Park, Hyun Sung Ko, Young Ahn Leem, Min Yong Jeon, Eun Deok Sim, Sung Bock Kim
  • Patent number: 7745836
    Abstract: Provided are a superluminescent diode with a high optical power and a broad wavelength band, and a method of fabricating the same. The superluminescent diode includes: at least one high optical confinement factor (HOCF) region; and at least one low optical confinement factor (LOCF) region having a lower optical confinement factor than the HOCF region. The method includes obtaining a difference of optical confinement factors in the HOCF region and the LOCF region through a selective area growth method, the selective area growth method using a deposition thicknesses difference of thin layers according to a width difference of openings that expose a substrate.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: June 29, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jung-Ho Song, Ki-Soo Kim, Young-Ahn Leem, Gyung-Ock Kim
  • Publication number: 20100142579
    Abstract: Provided is a resonator of a hybrid laser diode. The resonator includes: a substrate including a semiconductor layer where a hybrid waveguide, a multi-mode waveguide, and a single mode waveguide are connected in series; a compound semiconductor waveguide, provided on the hybrid waveguide of the semiconductor layer, having a tapered coupling structure at one end of the compound semiconductor waveguide, the tapered coupling structure overlapping the multi-mode waveguide partially; and a reflection part provided on one end of the single mode waveguide. The multi-mode waveguide has a narrower width than the hybrid waveguide and the single mode waveguide has a narrower width than the multi-mode waveguide.
    Type: Application
    Filed: July 7, 2009
    Publication date: June 10, 2010
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Young Ahn LEEM, Jung-Ho SONG, Kisoo KIM, Gyungock KIM
  • Patent number: 7720128
    Abstract: Provided are a laser diode generating passive mode locking that does not contain non-linear sector of an SA, and a method of creating an optical pulse using the same diode. The laser diode includes a DFB sector serving as a reflector and a gain sector. The gain sector is connected to the DFB sector and includes an as-cleaved facet formed at the end of the gain sector. When a current less than a threshold current is applied to the DFB sector to allow the DFB sector to operate as a reflector, passive mode locking occurs swiftly and therefore a sector of the SA is not required, which makes manufacturing simple. Also, it is possible to effectively extend a frequency variable region compared to using of the SA.
    Type: Grant
    Filed: May 22, 2006
    Date of Patent: May 18, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Young Ahn Leem, Eun Deok Sim, Dong Churl Kim, Kyung Hyun Park
  • Patent number: 7693361
    Abstract: Provided is a hybrid laser diode. The hybrid laser diode includes: a silicon layer constituting a slab waveguide; and a compound semiconductor layer disposed on the silicon layer to constitute a channel waveguide.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: April 6, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Young-Ahn Leem, Jung-Ho Song, Ki-Soo Kim, O-Kyun Kwon, Gyung-Ock Kim