Patents by Inventor Young-Wook Lee

Young-Wook Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8058114
    Abstract: A gate line includes a first seed layer formed on a base substrate and a first metal layer formed on the first seed layer. A first insulation layer is formed on the base substrate. A second insulation layer is formed on the base substrate. Here, a line trench is formed through the second insulation layer in a direction crossing the gate line. A data line includes a second seed layer formed below the line trench and a second metal layer formed in the line trench. A pixel electrode is formed in a pixel area of the base substrate. Therefore, a trench of a predetermined depth is formed using an insulation layer and a metal layer is formed through a plating method, so that a metal line having a sufficient thickness may be formed.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: November 15, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jang-Soo Kim, Hong-Long Ning, Bong-Kyun Kim, Hong-Sick Park, Shi-Yul Kim, Chang-Oh Jeong, Sang-Gab Kim, Jae-Hyoung Youn, Woo-Geun Lee, Yang-Ho Bae, Pil-Sang Yun, Jong-Hyun Choung, Sun-Young Hong, Ki-Won Kim, Byeong-Jin Lee, Young-Wook Lee, Jong-In Kim, Byeong-Beom Kim, Nam-Seok Suh
  • Patent number: 8045080
    Abstract: A thin film transistor array panel includes a substrate; a plurality of gate lines that are formed on the substrate; a plurality of data lines that intersect the gate lines; a plurality of thin film transistors that are connected to the gate lines and the data lines; a plurality of color filters that are formed on upper parts of the gate lines, the data lines, and the thin film transistors; a common electrode that is formed on the color filters and that includes a transparent conductor; a passivation layer that is formed on an upper part of the common electrode; and a plurality of pixel electrodes that are formed on an upper part of the passivation layer and that are connected to a drain electrode of each of the thin film transistors.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: October 25, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Wook Lee, Jang-Soo Kim
  • Publication number: 20110227063
    Abstract: Provided is an oxide thin-film transistor (TFT) substrate that may enhance the display quality of a display device and a method of fabricating the same via a simple process. The oxide TFT substrate includes: a substrate, a gate line, a data line, an oxide TFT, and a pixel electrode. An oxide layer of the oxide TFT includes a first region that has semiconductor characteristics and a channel, and a second region that is conductive and surrounds the first region. A portion of the first region is electrically connected to the pixel electrode, and the second region is electrically connected to the data line.
    Type: Application
    Filed: March 11, 2011
    Publication date: September 22, 2011
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Pil-Sang YUN, Young-Wook LEE, Woo-Geun LEE
  • Publication number: 20110198603
    Abstract: Disclosed are a thin film transistor and a method of forming the thin film transistor. The thin film transistor includes a gate electrode, an oxide semiconductor pattern, a first gate insulating layer pattern interposed between the gate electrode and the oxide semiconductor pattern, wherein the first gate insulating layer pattern has an island shape or has two portions of different thicknesses from each other, a source electrode and a drain electrode electrically connected to the oxide semiconductor pattern, wherein the source electrode and the drain electrode are separated from each other, and a first insulating layer pattern placed between the source electrode and drain electrode and the oxide semiconductor pattern, wherein the first insulating layer pattern partially contacts the source electrode and drain electrode and the first gate insulating layer pattern, and wherein the first insulating layer is enclosed by an outer portion.
    Type: Application
    Filed: October 12, 2010
    Publication date: August 18, 2011
    Inventors: SEUNG-HA CHOI, Kyoung-Jae Chung, Young-Wook Lee
  • Publication number: 20110193076
    Abstract: A thin film transistor panel includes an insulating substrate, a gate insulating layer disposed on the insulating substrate, an oxide semiconductor layer disposed on the gate insulating layer, an etch stopper disposed on the oxide semiconductor layer, and a source electrode and a drain electrode disposed on the etch stopper.
    Type: Application
    Filed: December 1, 2010
    Publication date: August 11, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Pil-Sang YUN, Ki-Won KIM, Hye-Young RYU, Woo-Geun LEE, Seung-Ha CHOI, Jae-Hyoung YOUN, Kyoung-Jae CHUNG, Young-Wook LEE, Je-Hun LEE, Kap-Soo YOON, Do-Hyun KIM, Dong-Ju YANG, Young-Joo CHOI
  • Publication number: 20110175088
    Abstract: A thin-film transistor (TFT) substrate having reduced defects is fabricated using a reduced number of masks. The TFT substrate includes gate wiring formed on a substrate. The gate wiring includes a gate electrode. A semiconductor pattern is formed on the gate wiring. An etch-stop pattern is formed on the semiconductor pattern. Data wiring includes a source electrode which is formed on the semiconductor pattern and the etch-stop pattern. Each of the gate wiring and the data wiring includes a copper-containing layer and a buffer layer formed on or under the copper-containing layer.
    Type: Application
    Filed: January 11, 2011
    Publication date: July 21, 2011
    Inventors: Jong In Kim, Young-Wook Lee, Jean-Ho Song, Jae-Hyoung Yoon, Sung-Ryul Kim, Byeong-Beom Kim, Je-Hyeong Park, Woo-Geun Lee
  • Publication number: 20110168997
    Abstract: A thin film transistor (TFT) array substrate and a manufacturing method thereof are provided. The TFT array substrate may include a gate line disposed on a substrate and including a gate line and a gate electrode, an oxide semiconductor layer pattern disposed on the gate electrode, a data line disposed on the oxide semiconductor layer pattern and including a source electrode and a drain electrode of a thin film transistor (TFT) together with the gate electrode, and a data line extending in a direction intersecting the gate line, and etch stop patterns disposed at an area where the TFT is formed between the source/drain electrodes and the oxide semiconductor layer pattern and at an area where the gate line and the data line overlap each other between the gate line and the data line.
    Type: Application
    Filed: January 14, 2011
    Publication date: July 14, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Young-Wook LEE, Woo-Geun LEE, Ki-Won KIM, Hyun-Jung LEE, Ji-Soo OH
  • Publication number: 20110159622
    Abstract: Embodiments of the present invention relate to a thin film transistor and a manufacturing method of a display panel, and include forming a gate line including a gate electrode on a substrate, forming a gate insulating layer on the gate electrode, forming an intrinsic semiconductor on the gate insulating layer, forming an extrinsic semiconductor on the intrinsic semiconductor, forming a data line including a source electrode and a drain electrode on the extrinsic semiconductor, and plasma-treating a portion of the extrinsic semiconductor between the source electrode and the drain electrode to form a protection member and ohmic contacts on respective sides of the protection member. Accordingly, the process for etching the extrinsic semiconductor and forming an inorganic insulating layer for protecting the intrinsic semiconductor may be omitted such that the manufacturing process of the display panel may be simplified, manufacturing cost may be reduced, and productivity may be improved.
    Type: Application
    Filed: March 7, 2011
    Publication date: June 30, 2011
    Inventors: Yu-Gwang Jeong, Young-Wook Lee, Sang-Gab Kim, Woo-Geun Lee, Min-Seok Oh, Jang-Soo Kim, Kap-Soo Yoon, Shin-Il Choi, Hong-Kee Chin, Seung-Ha Choi, Seung-Hwan Shim, Sung-Hoon Yang, Ki-Hun Jeong
  • Patent number: 7926138
    Abstract: A laundry treatment apparatus and a controlling method thereof are disclosed. The laundry treatment apparatus includes a leakage detecting device detecting washing water leaking to the lower side of a casing, an auxiliary power supply recharged when a main electric power is supplied, and a controller controlling the auxiliary electric power supply according to the detection by the leakage detecting device. According to the leakage controlling method, since the external electric power inputted to the laundry treatment apparatus is interrupted and the auxiliary power supply is recharged during the supplying of the main electric power to the laundry treatment apparatus when the leakage is detected, an electric leakage and other accidents can be prevented, and an informing device is controlled by the auxiliary power supply so that the leakage can be measured.
    Type: Grant
    Filed: November 1, 2006
    Date of Patent: April 19, 2011
    Assignee: LG Electronics Inc.
    Inventor: Young Wook Lee
  • Patent number: 7923732
    Abstract: Embodiments of the present invention relate to a thin film transistor and a manufacturing method of a display panel, and include forming a gate line including a gate electrode on a substrate, forming a gate insulating layer on the gate electrode, forming an intrinsic semiconductor on the gate insulating layer, forming an extrinsic semiconductor on the intrinsic semiconductor, forming a data line including a source electrode and a drain electrode on the extrinsic semiconductor, and plasma-treating a portion of the extrinsic semiconductor between the source electrode and the drain electrode to form a protection member and ohmic contacts on respective sides of the protection member. Accordingly, the process for etching the extrinsic semiconductor and forming an inorganic insulating layer for protecting the intrinsic semiconductor may be omitted such that the manufacturing process of the display panel may be simplified, manufacturing cost may be reduced, and productivity may be improved.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: April 12, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yu-Gwang Jeong, Young-Wook Lee, Sang-Gab Kim, Woo-Geun Lee, Min-Seok Oh, Jang-Soo Kim, Kap-Soo Yoon, Shin-Il Choi, Hong-Kee Chin, Seung-Ha Choi, Seung-Hwan Shim, Sung-Hoon Yang, Ki-Hun Jeong
  • Patent number: 7923176
    Abstract: A mask includes a transparent substrate, a light-blocking layer and a halftone layer. The light-blocking layer includes a source electrode pattern portion including a first electrode portion, a second electrode portion and a third electrode portion, and a drain electrode pattern portion disposed between the second electrode portion and the third electrode portion. The halftone layer includes a halftone portion corresponding to a spaced-apart portion between the source electrode pattern portion and the drain electrode pattern portion, and a dummy halftone portion more protrusive than ends of the second electrode portion and the third electrode portion. Thus, a photoresist pattern corresponding to a channel portion of a thin film transistor (TFT) may be formed with a uniform thickness, to thereby prevent an excessive etching of the channel portion.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: April 12, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chong-Chul Chai, Mee-Hye Jung, Woo-Geun Lee, Woo-Seok Jeon, Young-Wook Lee, Jung-In Park, Jun-Hyung Souk, Won-Kie Chang, Shi-Yul Kim
  • Publication number: 20110058418
    Abstract: A 3D nonvolatile memory device includes: a plurality of channel structures including a plurality of channel layers and interlayer dielectric layers, which are alternately stacked, and extended in a first direction; a plurality of word lines extended in a second direction at least substantially perpendicular to the first direction; a plurality of row select lines connected to the plurality of channel layers, respectively, and extended in the second direction; and a plurality of column select lines connected to the plurality of channel structures, respectively, and extended in the first direction.
    Type: Application
    Filed: May 18, 2010
    Publication date: March 10, 2011
    Inventors: Won-Joon CHOI, Moon-Sig Joo, Ki-Hong Lee, Beom-Yong Kim, Jun-Yeol Cho, Young-Wook Lee
  • Patent number: 7902551
    Abstract: The present invention relates to a liquid crystal display and a method of manufacturing the same. A liquid crystal display according to an exemplary embodiment of the present invention includes: a first substrate, a first conductor arranged on the first substrate, a first insulating layer arranged on the first substrate and the first conductor, a second insulating layer arranged on the first insulating layer, a semiconductor layer arranged on the second insulating layer, and a second conductor arranged on the semiconductor layer and the second insulating layer. The semiconductor layer is made of an oxide semiconductor, and the second conductor includes a source electrode, a drain electrode, and a storage electrode line.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: March 8, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-In Kim, Jang-Soo Kim, Young-Wook Lee
  • Patent number: 7880833
    Abstract: A thin film transistor array panel includes a substrate, a first gate line and a second gate line formed on the substrate, a storage electrode line between the first gate line and the second gate line, a data line intersecting the first gate line and the second gate line, a first thin film transistor connected to the first gate line and the data line, at least one color filter formed on the first thin film transistor, wherein the color filter comprises a first portion adjacent the first gate line with respect to the storage electrode line, a second portion adjacent the second gate line with respect to the storage electrode line, and a first connection connecting the first portion and the second portion and having a narrower width than that of the first and second portions, a first sub-pixel electrode formed on the color filter and connected to the first thin film transistor, and a second sub-pixel electrode facing the first sub-pixel electrode with respect to a gap, wherein at least one of an edge of the firs
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: February 1, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyoung-Ju Shin, Hye-Young Ryu, Jang-Soo Kim, Chong-Chul Chal, Jae-Hyoung Youn, Young-Wook Lee
  • Patent number: 7877732
    Abstract: A method for efficiently stress testing a service oriented architecture based application. A business process flow is recorded between a client and a server. When an XML document is extracted from the recorded business process flow, an XML document file is created for the extracted XML document, an XML document descriptor file is created comprising XPath queries for data elements in the XML document file, a configuration file is created comprising user input parameters obtained from the recorded business process flow, and test input data file is created. The user input parameters in the configuration file are used to generate a test script to test the service oriented architecture based application, wherein data values from the test input data file are inserted into a template of the XML document file at locations specified by the XPath queries in the XML document descriptor file. The test script is then executed.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: January 25, 2011
    Assignee: International Business Machines Corporation
    Inventors: Philip Arthur Day, Young Wook Lee, Kyle D. Robeson
  • Patent number: 7834676
    Abstract: A device for accounting for changes in characteristics of a transistor is presented. The device includes a transistor and a comparator receiving a feedback signal from the transistor and a reference signal. The comparator provides an output to a bias voltage generator. The bias voltage generator includes an input connected to the output of the comparator and an output connected to the transistor. In some embodiments of the invention the transistor is a double gate transistor and the bias voltage generator is applied to a top gate of the double gate transistor in order to control characteristics of the transistor such as turn on voltage.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: November 16, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Woo-Geun Lee, Jean-Ho Song, Yeong-Keun Kwon, Min-Cheol Lee, Ki-Won Kim, Young-Wook Lee
  • Publication number: 20100258852
    Abstract: A method for fabricating a non-volatile memory device includes alternately stacking a plurality of interlayer dielectric layers and a plurality of conductive layers over a substrate, etching the interlayer dielectric layers and the conductive layers to form a trench which exposes a surface of the substrate forming a first material layer over a resulting structure in which the trench is formed, forming a second material layer over the first material layer, removing portions of the second material layer and the first material layer formed on a bottom of the trench to expose the surface of the substrate, removing the second material layer, and burying a channel layer within the trench in which the second material layer is removed.
    Type: Application
    Filed: April 5, 2010
    Publication date: October 14, 2010
    Inventors: Se-Yun Lim, Eun-Seok Choi, Young-Wook Lee, Won-Joon Choi, Ki-Hong Lee, Sang-Bum Lee
  • Publication number: 20100261322
    Abstract: A gate line includes a first seed layer formed on a base substrate and a first metal layer formed on the first seed layer. A first insulation layer is formed on the base substrate. A second insulation layer is formed on the base substrate. Here, a line trench is formed through the second insulation layer in a direction crossing the gate line. A data line includes a second seed layer formed below the line trench and a second metal layer formed in the line trench. A pixel electrode is formed in a pixel area of the base substrate. Therefore, a trench of a predetermined depth is formed using an insulation layer and a metal layer is formed through a plating method, so that a metal line having a sufficient thickness may be formed.
    Type: Application
    Filed: June 9, 2010
    Publication date: October 14, 2010
    Inventors: Jang-Soo Kim, Hong-Long Ning, Bong-Kyun Kim, Hong-Sick Park, Shi-Yul Kim, Chang-Oh Jeong, Sang-Gab Kim, Jae-Hyoung Youn, Woo-Geun Lee, Yang-Ho Bae, Pil-Sang Yun, Jong-Hyun Choung, Sun-Young Hong, Ki-Won Kim, Byeong-Jin Lee, Young-Wook Lee, Jong-In Kim, Byeong-Beom Kim, Nam-Seok Suh
  • Patent number: 7790523
    Abstract: A mask that is capable of forming a thin-film transistor (TFT) with improved electrical characteristics is presented. The mask includes a drain mask pattern, a source mask pattern and a light-adjusting pattern. The drain mask pattern blocks light for forming a drain electrode. The source mask pattern blocks light for forming a source electrode and faces the drain mask pattern. A distance between the drain and source mask patterns is no more than the resolution of an exposing device. The light-adjusting pattern is formed between end portions of the source mask pattern and the drain mask pattern to block at least some light from entering a space between the source and drain mask patterns.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: September 7, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Wook Lee, Woo-Geun Lee, Jung-In Park, Youn-Hee Cha
  • Publication number: 20100182068
    Abstract: A device for accounting for changes in characteristics of a transistor is presented. The device includes a transistor and a comparator receiving a feedback signal from the transistor and a reference signal. The comparator provides an output to a bias voltage generator. The bias voltage generator includes an input connected to the output of the comparator and an output connected to the transistor. In some embodiments of the invention the transistor is a double gate transistor and the bias voltage generator is applied to a top gate of the double gate transistor in order to control characteristics of the transistor such as turn on voltage.
    Type: Application
    Filed: January 21, 2009
    Publication date: July 22, 2010
    Inventors: Woo-Geun LEE, Jean-Ho Song, Yeong-Keun Kwon, Min-Cheol Lee, Ki-Won Kim, Young-Wook Lee