Patents by Inventor Young-Wook Park

Young-Wook Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040097067
    Abstract: The present invention provides methods of fabricating integrated circuit devices that include a microelectronic substrate and a conductive layer disposed on the microelectronic substrate. An insulating layer is disposed on the conductive layer and the insulating layer includes an overhanging portion that extends beyond the conductive layer. A sidewall insulating region is disposed laterally adjacent to a sidewall of the conductive layer and extends between the overhanging portion of the insulating layer and the microelectronic substrate.
    Type: Application
    Filed: November 13, 2003
    Publication date: May 20, 2004
    Inventors: Hyoung-Joon Kim, Young-Wook Park, Byeong-Yun Nam
  • Publication number: 20040085708
    Abstract: An etch stop layer is formed over a surface of an interlayer insulating layer and over a surface of a conductive plug extending at a depth from the surface of the interlayer insulating layer. A lower mold layer is deposited over the etch stop layer, and a wet etch rate of the lower mold layer is adjusted by adding dopants to the lower mold layer during formation of the lower mold layer, and by annealing the lower mold layer. An upper mold layer is then deposited over the surface of the lower mold layer, such that a wet etch rate of the upper mold layer is less than the adjusted wet etch rate of the lower mold layer. The upper mold layer, the lower mold layer and the etch stop layer are then subjected to dry etching to form an opening therein which exposes at least a portion of the surface of the contact plug.
    Type: Application
    Filed: October 20, 2003
    Publication date: May 6, 2004
    Inventors: Jung-Hwan Oh, Ki-Hyun Hwang, Jae-Young Park, In-Seak Hwang, Young-Wook Park
  • Patent number: 6720275
    Abstract: Methods of forming Ta2O5 layers in a process chamber are disclosed. A Ta2O5 layer can be maintained at a first temperature that is less than a temperature for crystallization of the Ta2O5 layer. At least one of a position of the Ta2O5 layer in the process chamber relative to the heater and a pressure in the process chamber is changed to increase the temperature of the Ta2O5 layer to about the temperature for crystallization.
    Type: Grant
    Filed: March 12, 2003
    Date of Patent: April 13, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ki-yeon Park, Heung-soo Park, Young-wook Park
  • Publication number: 20040056755
    Abstract: Methods are provided for forming an integrated circuit device including a resistor pattern having a desired resistance value. A low resistive layer is formed on an integrated circuit substrate. An insulating layer is formed on the low resistive layer opposite the integrated circuit substrate. A high resistive layer, which may have a specific resistance of at least about a hundred &mgr;&OHgr;·cm, is formed on the insulating layer opposite the low resistive layer. The low resistive layer, the insulating layer and the high resistive layer define the resistor pattern in a region of the integrated circuit substrate. Integrated circuit devices including resistor patterns as provided by the methods are also provided and methods for forming metal contacts to the resistor pattern are also provided.
    Type: Application
    Filed: September 25, 2003
    Publication date: March 25, 2004
    Inventors: Seok-Jun Won, Young-Wook Park
  • Patent number: 6700153
    Abstract: An etch stop layer is formed over a surface of an interlayer insulating layer and over a surface of a conductive plug extending at a depth from the surface of the interlayer insulating layer. A lower mold layer is deposited over the etch stop layer, and a wet etch rate of the lower mold layer is adjusted by adding dopants to the lower mold layer during formation of the lower mold layer, and by annealing the lower mold layer. An upper mold layer is then deposited over the surface of the lower mold layer, such that a wet etch rate of the upper mold layer is less than the adjusted wet etch rate of the lower mold layer. The upper mold layer, the lower mold layer and the etch stop layer are then subjected to dry etching to form an opening therein which exposes at least a portion of the surface of the contact plug.
    Type: Grant
    Filed: May 2, 2002
    Date of Patent: March 2, 2004
    Assignee: Samsung Electronics Co. Ltd.
    Inventors: Jung-Hwan Oh, Ki-Hyun Hwang, Jae-Young Park, In-Seak Hwang, Young-Wook Park
  • Publication number: 20040033662
    Abstract: Methods of forming integrated circuit capacitors include the steps of forming a lower electrode of a capacitor by forming a conductive layer pattern (e.g., silicon layer) on a semiconductor substrate and then forming a hemispherical grain (HSG) silicon surface layer of first conductivity type on the conductive layer pattern. The inclusion of a HSG silicon surface layer on an outer surface of the conductive layer pattern increases the effective surface area of the lower electrode for a given lateral dimension. The HSG silicon surface layer is also preferably sufficiently doped with first conductivity type dopants (e.g., N-type) to minimize the size of any depletion layer which may be formed in the lower electrode when the capacitor is reverse biased and thereby improve the capacitor's characteristic Cmin/Cmax ratio. A diffusion barrier layer (e.g., silicon nitride) is also formed on the lower electrode and then a dielectric layer is formed on the diffusion barrier layer.
    Type: Application
    Filed: August 5, 2003
    Publication date: February 19, 2004
    Inventors: Seung-Hwan Lee, Sang-Hyeop Lee, Young-Sun Kim, Se-Jin Shim, You-Chan Jin, Ju-Tae Moon, Jin-Seok Choi, Young-Min Kim, Kyung-Hoon Kim, Kab-Jin Nam, Young-Wook Park, Seok-Jun Won, Young-Dae Kim
  • Patent number: 6693032
    Abstract: A semiconductor device adopting an interlayer contact structure between upper and lower conductive layers and a method of manufacturing the semiconductor device adopting the structure are provided. The lower conductive layer includes a first conductive layer and a first silicide layer stacked together. The upper conductive layer includes a second conductive layer doped with impurities and a second silicide layer stacked together. In the interlayer contact structure, the first and second conductive layers are in direct contact with each other. This decreases the contact resistance between the two conductive layers and improves the electrical properties of the device.
    Type: Grant
    Filed: June 27, 2001
    Date of Patent: February 17, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Bong-young Yoo, Dae-hong Ko, Nae-in Lee, Young-wook Park
  • Patent number: 6680511
    Abstract: The present invention provide integrated circuit devices and methods of fabricating the same that include a microelectronic substrate and a conductive layer disposed on the microelectronic substrate. An insulating layer is disposed on the conductive layer and the insulating layer includes an overhanging portion that extends beyond the conductive layer. A sidewall insulating region is disposed laterally adjacent to a sidewall of the conductive layer and extends between the overhanging portion of the insulating layer and the microelectronic substrate.
    Type: Grant
    Filed: January 18, 2002
    Date of Patent: January 20, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyoung-Joon Kim, Young-Wook Park, Byeong-Yun Nam
  • Patent number: 6680251
    Abstract: A layer is formed by chemical vapor depositing a seeding layer of ruthenium oxide on a substrate at a chemical vapor deposition flow rate ratio of a ruthenium source to oxygen gas. A main layer of ruthenium is chemical vapor deposited on the seeding layer by increasing the chemical vapor deposition flow rate ratio of the ruthenium source to the oxygen gas.
    Type: Grant
    Filed: February 21, 2002
    Date of Patent: January 20, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seok-jun Won, Cha-young Yoo, Sung-tae Kim, Young-wook Park, Yun-jung Lee, Soon-yeon Park
  • Patent number: 6653155
    Abstract: Methods are provided for forming an integrated circuit device including a resistor pattern having a desired resistance value. A low resistive layer is formed on an integrated circuit substrate. An insulating layer is formed on the low resistive layer opposite the integrated circuit substrate. A high resistive layer, which may have a specific resistance of at least about a hundred &mgr;&OHgr;·cm, is formed on the insulating layer opposite the low resistive layer. The low resistive layer, the insulating layer and the high resistive layer define the resistor pattern in a region of the integrated circuit substrate. Integrated circuit devices including resistor patterns as provided by the methods are also provided and methods for forming metal contacts to the resistor pattern are also provided.
    Type: Grant
    Filed: January 17, 2002
    Date of Patent: November 25, 2003
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seok-Jun Won, Young-Wook Park
  • Patent number: 6624069
    Abstract: Methods of forming integrated circuit capacitors include the steps of forming a lower electrode of a capacitor by forming a conductive layer pattern (e.g., silicon layer) on a semiconductor substrate and then forming a hemispherical grain (HSG) silicon surface layer of first conductivity type on the conductive layer pattern. The inclusion of a HSG silicon surface layer on an outer surface of the conductive layer pattern increases the effective surface area of the lower electrode for a given lateral dimension. The HSG silicon surface layer is also preferably sufficiently doped with first conductivity type dopants (e.g., N-type) to minimize the size of any depletion layer which may be formed in the lower electrode when the capacitor is reverse biased and thereby improve the capacitor's characteristic Cmin/Cmax ratio. A diffusion barrier layer (e.g., silicon nitride) is also formed on the lower electrode and then a dielectric layer is formed on the diffusion barrier layer.
    Type: Grant
    Filed: December 12, 2000
    Date of Patent: September 23, 2003
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-Hwan Lee, Sang-Hyeop Lee, Young-Sun Kim, Se-Jin Shim, You-Chan Jin, Ju-Tae Moon, Jin-Seok Choi, Young-Min Kim, Kyung-Hoon Kim, Kab-Jin Nam, Young-Wook Park, Seok-Jun Won, Young-Dae Kim
  • Publication number: 20030166346
    Abstract: Methods of forming Ta2O5 layers in a process chamber are disclosed. A Ta2O5 layer can be maintained at a first temperature that is less than a temperature for crystallization of the Ta2O5 layer. At least one of a position of the Ta2O5 layer in the process chamber relative to the heater and a pressure in the process chamber is changed to increase the temperature of the Ta2O5 layer to about the temperature for crystallization.
    Type: Application
    Filed: March 12, 2003
    Publication date: September 4, 2003
    Inventors: Ki-Yeon Park, Heung-Soo Park, Young-Wook Park
  • Publication number: 20030121132
    Abstract: An etch stop layer is formed over a surface of an interlayer insulating layer and over a surface of a conductive plug extending at a depth from the surface of the interlayer insulating layer. A lower mold layer is deposited over the etch stop layer, and a wet etch rate of the lower mold layer is adjusted by adding dopants to the lower mold layer during formation of the lower mold layer, and by annealing the lower mold layer. An upper mold layer is then deposited over the surface of the lower mold layer, such that a wet etch rate of the upper mold layer is less than the adjusted wet etch rate of the lower mold layer. The upper mold layer, the lower mold layer and the etch stop layer are then subjected to dry etching to form an opening therein which exposes at least a portion of the surface of the contact plug.
    Type: Application
    Filed: May 2, 2002
    Publication date: July 3, 2003
    Inventors: Jung-Hwan Oh, Ki-Hyun Hwang, Jae-Young Park, In-Seak Hwang, Young-Wook Park
  • Patent number: 6576053
    Abstract: In a method of forming a thin film using an atomic layer deposition (ALD) method, a thin film is formed on a substrate in cycles. Each cycle includes injecting a first reactant including an atom that forms the thin film and a ligand into a reaction chamber that includes the substrate, purging the first reactant, injecting a second reactant into the reaction chamber, and purging the second reactant. The thin film is formed by a chemical reaction between the atom that forms the thin film and a second reactant whose binding energy with respect to the atom that forms the thin film is larger than the binding energy of the ligand with respect to the atom that forms the thin film and the generation of by-products is prevented. The generation of a hydroxide by-product in the thin film is suppressed by using a material that does not include a hydroxide as the second reactant, purging the second reactant, and reacting the second reactant with a third reactant that includes hydroxide.
    Type: Grant
    Filed: October 6, 2000
    Date of Patent: June 10, 2003
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yeong-kwan Kim, Young-wook Park, Jae-soon Lim, Sung-je Choi, Sang-in Lee
  • Publication number: 20030096472
    Abstract: Methods and apparatus for oxygen radical annealing or plasma annealing various layers (e.g., a lower electrode, a dielectric layer, or an upper electrode) of a microelectronic capacitor on a substrate are provided. By oxygen radical or plasma annealing the lower electrode of the capacitor, the leakage current characteristic of the capacitor may be improved such that the leakage current is reduced, for example, by a factor of 100 or more. The amount of impurities on the lower electrode may also be reduced. Oxygen radical or plasma annealing the dielectric layer of the capacitor may improve the leakage current characteristics of the capacitor and may reduce the amount of impurities in the dielectric layer. By ozone annealing the upper electrode, the leakage current characteristic of the capacitor may be improved and the number of oxygen vacancies formed in the dielectric layer may be reduced.
    Type: Application
    Filed: November 15, 2002
    Publication date: May 22, 2003
    Inventors: Chang-Seok Kang, Doo-Sup Hwang, Cha-Young Yoo, Young-Wook Park, Hong-Bae Park
  • Patent number: 6555394
    Abstract: Methods of forming Ta2O5 layers in a process chamber are disclosed. A Ta2O5 layer can be maintained at a first temperature that is less than a temperature for crystallization of the Ta2O5 layer. At least one of a position of the Ta2O5 layer in the process chamber relative to the heater and a pressure in the process chamber is changed to increase the temperature of the Ta2O5 layer to about the temperature for crystallization.
    Type: Grant
    Filed: May 29, 2001
    Date of Patent: April 29, 2003
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ki-yeon Park, Heung-soo Park, Young-wook Park
  • Publication number: 20030049943
    Abstract: A method of forming a dielectric film composed of metal oxide under an atmosphere of activated vapor containing oxygen. In the method of forming the dielectric film, a metal oxide film is formed on a semiconductor substrate using a metal organic precursor and O2 gas while the semiconductor substrate is exposed under activated vapor atmosphere containing oxygen, and then, the metal oxide film is annealed while the semiconductor substrate is exposed under activated vapor containing oxygen. The annealing may take place in situ with the formation of the metal oxide film, at the same or substantially the same temperature as the metal oxide forming, and/or at at least one of a different pressure, oxygen concentration, or oxygen flow rate as the metal oxide forming.
    Type: Application
    Filed: April 25, 2002
    Publication date: March 13, 2003
    Inventors: Han-Mei Choi, Sung-Tae Kim, Young-Wook Park, Young-Sun Kim, Ki-Chul Kim, In-Sung Park
  • Publication number: 20030013320
    Abstract: The present invention provides a method of forming a thin film using atomic layer deposition (ALD). An ALD reactor having a single reaction space is provided. A batch of substrates is concurrently loaded into the single reaction space of the ALD reactor.
    Type: Application
    Filed: May 31, 2001
    Publication date: January 16, 2003
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Yeong-Kwan Kim, Young-Wook Park, Seung-Hwan Lee
  • Publication number: 20020195683
    Abstract: A semiconductor device includes a first electrode formed of a silicon-family material, a dielectric layer formed by sequentially supplying reactants on the first electrode, and a second electrode having a work function larger than that of the first electrode, with the second electrode being formed on the dielectric layer. The first electrode and the second electrode can be a lower electrode and an upper electrode, respectively, in a capacitor structure. Also, the first electrode and the second electrode can be a silicon substrate and a gate electrode, respectively, in a transistor structure. A stabilizing layer, which is, for example, a silicon oxide layer, a silicon nitride layer, or a composite layer of the silicon oxide layer and the silicon nitride layer, for facilitating the formation of the dielectric layer by hydrophilizing the surface of the first electrode, may be formed on the first electrode. The dielectric layer can be formed by an atomic layer deposition method.
    Type: Application
    Filed: March 27, 2000
    Publication date: December 26, 2002
    Inventors: Yeong-kwan Kim, Heung-soo Park, Young-wook Park, Sang-in Lee, Yoon-hee Chang, Jong-ho Lee, Sung-je Choi, Seung-hwan Lee, Jae-soon Lim, Joo-won Lee
  • Patent number: 6476489
    Abstract: A semiconductor device adopting an interlayer contact structure between upper and lower conductive layers and a method of manufacturing the semiconductor device adopting the structure are provided. The lower conductive layer includes a first conductive layer and a first silicide layer stacked together. The upper conductive layer includes a second conductive layer doped with impurities and a second silicide layer stacked together. In the interlayer contact structure, the first and second conductive layers are in direct contact with each other. This decreases the contact resistance between the two conductive layers and improves the electrical properties of the device.
    Type: Grant
    Filed: February 26, 1999
    Date of Patent: November 5, 2002
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Bong-young Yoo, Dae-hong Ko, Nae-in Lee, Young-wook Park