Patents by Inventor Yu-Chang Jong

Yu-Chang Jong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190088777
    Abstract: The present disclosure relates to an integrated chip. In some embodiments, the integrated chip has a gate structure disposed over a substrate between source and drain regions and a dielectric layer laterally extending from over the gate structure to between the gate structure and the drain region. A composite etch stop layer having a plurality of different dielectric materials is stacked over the dielectric layer. A contact etch stop layer directly contacts an upper surface and sidewalls of the composite etch stop layer. A field plate is laterally surrounded by a first inter-level dielectric (ILD) layer and vertically extends from a top of the first ILD layer, through the contact etch stop layer, and into the composite etch stop layer.
    Type: Application
    Filed: October 30, 2018
    Publication date: March 21, 2019
    Inventors: Hui-Ting Lu, Pei-Lun Wang, Yu-Chang Jong
  • Publication number: 20180219093
    Abstract: The present disclosure, in some embodiments, relates to a transistor device having a field plate. The transistor device has a gate electrode disposed over a substrate between a source region and a drain region. One or more dielectric layers are arranged over the gate electrode, and a field plate is arranged over the one or more dielectric layers. The field plate extends from a first outermost sidewall that is directly over an upper surface of the gate electrode to a second outermost sidewall that is between the gate electrode and the drain region and that extends to below the upper surface of the gate electrode.
    Type: Application
    Filed: March 21, 2018
    Publication date: August 2, 2018
    Inventors: Hsueh-Liang Chou, Dah-Chuen Ho, Hui-Ting Lu, Po-Chih Su, Pei-Lun Wang, Yu-Chang Jong
  • Patent number: 9954097
    Abstract: The present disclosure relates to a transistor device having a field plate, and a method of formation. In some embodiments, the transistor device has a gate electrode disposed over a substrate between a source region and a drain region. One or more dielectric layers laterally extend from over the gate electrode to a location between the gate electrode and the drain region. A field plate is located within an inter-level dielectric (ILD) layer overlying the substrate. The field plate laterally extends from over the gate electrode to over the location and vertically extends from the one or more dielectric layers to a top surface of the ILD layer. A conductive contact is arranged over the drain region and is surrounded by the ILD layer. The conductive contact extends to the top surface of the ILD layer.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: April 24, 2018
    Assignee: Taiwan Seminconductor Manufacturing Co., Ltd.
    Inventors: Hsueh-Liang Chou, Dah-Chuen Ho, Hui-Ting Lu, Po-Chih Su, Pei-Lun Wang, Yu-Chang Jong
  • Publication number: 20170345902
    Abstract: In some embodiments, a BJT structure includes a base region, an emitter region formed in the base region and including an emitter doping region, a collector region including a collector doping region, an insulating structure and a field plate. The base region forms a junction with the collector region between the emitter and collector doping regions. The field plate is formed over an insulating structure over the junction. A first distance between the corresponding emitter and collector doping regions to the junction is shorter than a second distance in another BJT structure without the field plate corresponding to the first distance. The first distance causes a breakdown of the junction corresponding to a first breakdown voltage value between the emitter and collector doping regions being substantially the same or greater than a second breakdown voltage value of the other BJT structure corresponding to the first breakdown voltage value.
    Type: Application
    Filed: May 31, 2016
    Publication date: November 30, 2017
    Inventors: JING-YING CHEN, YU-CHANG JONG, SHUI-MING CHENG
  • Publication number: 20170338218
    Abstract: A method for forming an integrated circuit includes forming a first guard ring around at least one transistor over a substrate. The method further includes forming a second guard ring around the first guard ring. The method further includes forming a first doped region adjacent to the first guard ring, the first doped region having a first dopant type. The method further includes forming a second doped region adjacent to the second guard ring, the second doped region having a second dopant type.
    Type: Application
    Filed: August 7, 2017
    Publication date: November 23, 2017
    Inventors: Ming-Song SHEU, Jian-Hsing LEE, Yu-Chang JONG, Chun-Chien TSAI
  • Patent number: 9748361
    Abstract: An integrated circuit includes at least one transistor over a substrate, and a first guard ring disposed around the at least one transistor. The integrated circuit further includes a second guard ring disposed around the first guard ring. The integrated circuit further includes a first doped region disposed adjacent to the first guard ring, the first doped region having a first dopant type. The integrated circuit further includes a second doped region disposed adjacent to the second guard ring, the second doped region having a second dopant type.
    Type: Grant
    Filed: June 24, 2014
    Date of Patent: August 29, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ming-Song Sheu, Jian-Hsing Lee, Yu-Chang Jong, Chun-Chien Tsai
  • Publication number: 20170243865
    Abstract: A semiconductor device includes a first a first transistor configured to operate at a first threshold voltage level. The first transistor includes a first gate structure and a first drain terminal electrically coupled to the first gate structure. The semiconductor device also includes a second transistor configured to operate at a second threshold voltage level different from the first threshold voltage level, The second transistor includes a second source terminal and a second gate structure electrically coupled to the first gate structure. The first gate structure and the second gate structure comprise a first component in common, and the second gate structure further includes at least one extra component disposed over the first component. The number of the at least one extra component is determined by a desired voltage difference between the first threshold voltage level and the second threshold voltage level.
    Type: Application
    Filed: May 8, 2017
    Publication date: August 24, 2017
    Inventors: CHEN-YI LEE, SHIH-FEN HUANG, PEI-LUN WANG, DAH-CHUEN HO, YU-CHANG JONG, MOHAMMAD AL-SHYOUKH, ALEXANDER KALNITSKY
  • Publication number: 20170186741
    Abstract: An integrated circuit includes at least one transistor over a substrate, and a first guard ring disposed around the at least one transistor. The integrated circuit further includes a second guard ring disposed around the first guard ring. The integrated circuit further includes a first doped region disposed adjacent to the first guard ring, the first doped region having a first dopant type. The integrated circuit further includes a second doped region disposed adjacent to the second guard ring, the second doped region having a second dopant type.
    Type: Application
    Filed: June 24, 2014
    Publication date: June 29, 2017
    Inventors: Ming-Song SHEU, Jian-Hsing LEE, Yu-Chang JONG, Chun-Chien TSAI
  • Publication number: 20170154882
    Abstract: Some embodiments of the present disclosure provide a semiconductor device. The semiconductor device includes a first transistor configured to include a first threshold voltage level. The first transistor includes a gate structure. The gate structure includes a first component including a first conductive type. A second transistor configures to include a second threshold voltage level different from the first threshold voltage level. The second transistor includes a gate structure. The gate structure includes a second component including the first conductive type. At least one extra component is disposed over the second component. The least one extra component includes a second conductive type opposite to the first conductive type. The first transistor and the second transistor are coupled such that the number of the least one extra component is determined by a desired voltage difference between the first threshold voltage level and the second threshold voltage level.
    Type: Application
    Filed: November 30, 2015
    Publication date: June 1, 2017
    Inventors: CHEN-YI LEE, SHIH-FEN HUANG, PEI-LUN WANG, DAH-CHUEN HO, YU-CHANG JONG, MOHAMMAD AL-SHYOUKH, ALEXANDER KALNITSKY
  • Patent number: 9666574
    Abstract: Some embodiments of the present disclosure provide a semiconductor device. The semiconductor device includes a first transistor configured to include a first threshold voltage level. The first transistor includes a gate structure. The gate structure includes a first component including a first conductive type. A second transistor configures to include a second threshold voltage level different from the first threshold voltage level. The second transistor includes a gate structure. The gate structure includes a second component including the first conductive type. At least one extra component is disposed over the second component. The least one extra component includes a second conductive type opposite to the first conductive type. The first transistor and the second transistor are coupled such that the number of the least one extra component is determined by a desired voltage difference between the first threshold voltage level and the second threshold voltage level.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: May 30, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chen-Yi Lee, Shih-Fen Huang, Pei-Lun Wang, Dah-Chuen Ho, Yu-Chang Jong, Mohammad Al-Shyoukh, Alexander Kalnitsky
  • Publication number: 20170148911
    Abstract: The present disclosure relates to a transistor device having a field plate, and a method of formation. In some embodiments, the transistor device has a gate electrode disposed over a substrate between a source region and a drain region. One or more dielectric layers laterally extend from over the gate electrode to a location between the gate electrode and the drain region. A field plate is located within an inter-level dielectric (ILD) layer overlying the substrate. The field plate laterally extends from over the gate electrode to over the location and vertically extends from the one or more dielectric layers to a top surface of the ILD layer. A conductive contact is arranged over the drain region and is surrounded by the ILD layer. The conductive contact extends to the top surface of the ILD layer.
    Type: Application
    Filed: February 3, 2017
    Publication date: May 25, 2017
    Inventors: Hsueh-Liang Chou, Dah-Chuen Ho, Hui-Ting Lu, Po-Chih Su, Pei-Lun Wang, Yu-Chang Jong
  • Publication number: 20170125608
    Abstract: In some embodiments, a semiconductor device includes a first well region configured to be an anode of the semiconductor device, a first doped region configured to be a cathode of the semiconductor device, a second doped region configured to be another cathode of the semiconductor device, and a conductive region. The first well region is disposed between the first doped region and the second doped region, and is configured for electrical connection of the conductive region.
    Type: Application
    Filed: October 30, 2015
    Publication date: May 4, 2017
    Inventors: HUI-TING LU, YU-CHANG JONG, PEI-LUN WANG
  • Patent number: 9634154
    Abstract: In some embodiments, a semiconductor device includes a first well region configured to be an anode of the semiconductor device, a first doped region configured to be a cathode of the semiconductor device, a second doped region configured to be another cathode of the semiconductor device, and a conductive region. The first well region is disposed between the first doped region and the second doped region, and is configured for electrical connection of the conductive region.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: April 25, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Hui-Ting Lu, Yu-Chang Jong, Pei-Lun Wang
  • Patent number: 9590053
    Abstract: The present disclosure relates to a high voltage transistor device having a field plate, and a method of formation. In some embodiments, the high voltage transistor device has a gate electrode disposed over a substrate between a source region and a drain region located within the substrate. A dielectric layer laterally extends from over the gate electrode to a drift region arranged between the gate electrode and the drain region. A field plate is located within a first inter-level dielectric layer overlying the substrate. The field plate laterally extends from over the gate electrode to over the drift region and vertically extends from the dielectric layer to a top surface of the first ILD layer. A plurality of metal contacts, having a same material as the field plate, vertically extend from a bottom surface of the first ILD layer to a top surface of the first ILD layer.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: March 7, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsueh-Liang Chou, Dah-Chuen Ho, Hui-Ting Lu, Po-Chih Su, Pei-Lun Wang, Yu-Chang Jong
  • Publication number: 20160149007
    Abstract: The present disclosure relates to a high voltage transistor device having a field plate, and a method of formation. In some embodiments, the high voltage transistor device has a gate electrode disposed over a substrate between a source region and a drain region located within the substrate. A dielectric layer laterally extends from over the gate electrode to a drift region arranged between the gate electrode and the drain region. A field plate is located within a first inter-level dielectric layer overlying the substrate. The field plate laterally extends from over the gate electrode to over the drift region and vertically extends from the dielectric layer to a top surface of the first ILD layer. A plurality of metal contacts, having a same material as the field plate, vertically extend from a bottom surface of the first ILD layer to a top surface of the first ILD layer.
    Type: Application
    Filed: January 26, 2015
    Publication date: May 26, 2016
    Inventors: Hsueh-Liang Chou, Dah-Chuen Ho, Hui-Ting Lu, Po-Chih Su, Pei-Lun Wang, Yu-Chang Jong
  • Publication number: 20140299913
    Abstract: An integrated circuit includes at least one transistor over a substrate, and a first guard ring disposed around the at least one transistor. The integrated circuit further includes a second guard ring disposed around the first guard ring. The integrated circuit further includes a first doped region disposed adjacent to the first guard ring, the first doped region having a first dopant type. The integrated circuit further includes a second doped region disposed adjacent to the second guard ring, the second doped region having a second dopant type.
    Type: Application
    Filed: June 24, 2014
    Publication date: October 9, 2014
    Inventors: Ming-Song SHEU, Jian-Hsing LEE, Yu-Chang JONG, Chun-Chien TSAI
  • Patent number: 8772092
    Abstract: A method for forming an integrated circuit. The method includes forming a first guard ring around at least one transistor over a substrate, the first guard ring having a first type dopant. The method further includes forming a second guard ring around the first guard ring, the second guard ring having a second type dopant. The method includes forming a first doped region adjacent to the first guard ring, the first doped region having the second type dopant. The method further includes forming a second doped region adjacent to the second guard ring, the second doped region having the first type dopant, wherein the first guard ring, the second guard ring, the first doped region, and the second doped region are capable of being operable as a first silicon controlled rectifier (SCR) to substantially release an electrostatic discharge (ESD).
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: July 8, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Song Sheu, Jian-Hsing Lee, Yu-Chang Jong, Chun-Chien Tsai
  • Patent number: 8344416
    Abstract: An integrated circuit includes at least one transistor over a substrate. A first guard ring is disposed around the at least one transistor. The first guard ring has a first type dopant. A second guard ring is disposed around the first guard ring. The second guard ring has a second type dopant. A first doped region is disposed adjacent to the first guard ring. The first doped region has the second type dopant. A second doped region is disposed adjacent to the second guard ring. The second doped region has the first type dopant. The first guard ring, the second guard ring, the first doped region, and the second doped region are capable of being operable as a first silicon controlled rectifier (SCR) to substantially release an electrostatic discharge (ESD).
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: January 1, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Song Sheu, Jian-Hsing Lee, Yu-Chang Jong, Chun-Chien Tsai
  • Patent number: 8324705
    Abstract: An integrated circuit structure includes a semiconductor substrate; a first well region of a first conductivity type over the semiconductor substrate; a second well region of a second conductivity type opposite the first conductivity type encircling the first well region; and a metal-containing layer over and adjoining the first well region and extending over at least an inner portion of the second well region. The metal-containing layer and the first well region form a Schottky barrier. The integrated circuit structure further includes an isolation region encircling the metal-containing layer; and a third well region of the second conductivity type encircling at least a central portion of the first well region. The third well region has a higher impurity concentration than the second well region, and includes a top surface adjoining the metal-containing layer, and a bottom surface higher than bottom surfaces of the first and the second well regions.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: December 4, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Shao Tang, Dah-Chuen Ho, Yu-Chang Jong, Zhe-Yi Wang, Yuh-Hwa Chang, Yogendra Yadav
  • Publication number: 20110260245
    Abstract: An integrated circuit device and method for fabricating the integrated circuit device is disclosed. In an embodiment, an apparatus includes a substrate having a first surface and a second surface, the second surface being opposite the first surface; a first device and a second device overlying the substrate; and an isolation structure that extends through the substrate from the first surface to the second surface and between the first device and the second device.
    Type: Application
    Filed: April 23, 2010
    Publication date: October 27, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ruey-Hsin LIU, Puo-Yu CHIANG, Chih-Wen YAO, Yu-Chang JONG, Hsiao-Chin TUAN