Patents by Inventor Yu-Chen Shen

Yu-Chen Shen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11569415
    Abstract: Described are light emitting diode (LED) devices comprising a plurality of mesas defining pixels, each of the mesas comprising semiconductor layers, an N-contact material in a space between each of the plurality of mesas, a dielectric material which insulates sidewalls of the P-type layer and the active region from the metal. A hard mask layer is above the semiconductor layers, the hard mask layer having a plurality of openings therein, each partially filled with a liner layer and partially filled with a P-metal material plug, the P-metal material plug having a width; and a passivation film is on the hard mask layer, the passivation film having a plurality of passivation film openings therein defining a width, the width of each passivation film opening being less than the width of a combination of the P-metal material plug and the liner layer.
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: January 31, 2023
    Assignee: Lumileds LLC
    Inventors: Erik William Young, Yu-Chen Shen, Chee Yin Foo, Yeow Meng Teo
  • Patent number: 11508877
    Abstract: A red light emitting diode including an epitaxial stacked layer, a first and a second electrodes and a first and a second electrode pads is provided. The epitaxial stacked layer includes a first-type and a second-type semiconductor layers and a light emitting layer. A main light emitting wavelength of the light emitting layer falls in a red light range. The epitaxial stacked layer has a first side adjacent to the first semiconductor layer and a second side adjacent to the second semiconductor layer. The first and the second electrodes are respectively electrically connected to the first-type and the second-type semiconductor layers, and respectively located to the first and the second sides. The first and a second electrode pads are respectively disposed on the first and the second electrodes and respectively electrically connected to the first and the second electrodes. The first and the second electrode pads are located at the first side of the epitaxial stacked layer.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: November 22, 2022
    Assignee: Genesis Photonics Inc.
    Inventors: Tung-Lin Chuang, Yi-Ru Huang, Yu-Chen Kuo, Chih-Ming Shen, Tsung-Syun Huang, Jing-En Huang
  • Publication number: 20220359799
    Abstract: A wavelength converting layer is partially diced to generate a first and second wavelength converting layer segment and to allow partial isolation between the first segment and the second segment such that the wavelength converting layer segments are connected by a connecting wavelength converting layer. The first and second wavelength converting layer segments are attached to a first and second light emitting device, respectively to create a first and second pixel. The connecting wavelength converting layer segment is removed to allow complete isolation between the first pixel and the second pixel. An optical isolation material is applied to exposed surfaces of the first and second pixel and a sacrificial portion of the wavelength converting layer segments and optical isolation material attached to the sacrificial portion is removed from a surface facing away from the first light emitting device, to expose a emitting surface of the first wavelength converting layer segment.
    Type: Application
    Filed: July 26, 2022
    Publication date: November 10, 2022
    Applicant: Lumileds LLC
    Inventors: Kentaro SHIMIZU, Hisashi MASUI, Yu-Chen SHEN, Danielle Russell CHAMBERLIN, Peter Josef SCHMIDT
  • Publication number: 20220293675
    Abstract: A first component with a first sidewall and a second component with a second sidewall may be mounted onto an expandable film such that an original distance X is the distance between the first sidewall and the second sidewall. The expandable film may be expanded such that an expanded distance Y is the distance between the first sidewall and the second sidewall and expanded distance Y is greater than original distance X. A first sidewall material may be applied within at least a part of a space between the first sidewall and the second sidewall. The expandable film may be expanded such that a contracted distance Z is the distance between the first sidewall and the second sidewall, and contracted distance Z is less than expanded distance Y.
    Type: Application
    Filed: June 3, 2022
    Publication date: September 15, 2022
    Applicant: LUMILEDS LLC
    Inventors: Tze Yang HIN, Yu-Chen SHEN, Luke GORDON, Danielle Russell CHAMBERLIN, Daniel Bernardo ROITMAN
  • Publication number: 20220293801
    Abstract: Methods of fabricating solar cells using UV-curing of light-receiving surfaces of the solar cells, and the resulting solar cells, are described herein. In an example, a method of fabricating a solar cell includes forming a passivating dielectric layer on a light-receiving surface of a silicon substrate. The method also includes forming an anti-reflective coating (ARC) layer below the passivating dielectric layer. The method also includes exposing the ARC layer to ultra-violet (UV) radiation. The method also includes, subsequent to exposing the ARC layer to ultra-violet (UV) radiation, thermally annealing the ARC layer.
    Type: Application
    Filed: May 31, 2022
    Publication date: September 15, 2022
    Inventors: Yu-Chen Shen, Perine Jaffrennou, Gilles Olav Tanguy Sylvain Poulain, Michael C. Johnson, Seung Bum Rim
  • Publication number: 20220285425
    Abstract: Described are light emitting diode (LED) devices comprising a plurality of mesas defining pixels, each of the plurality of mesas comprising semiconductor layers, an N-contact material in a space between each of the plurality of mesas, a dielectric material which insulates sidewalls of the P-type layer and the active region from the metal. Each of the mesas is spaced so that there is a pixel pitch in a range of from 10 ?m to 100 ?m and dark space gap between adjacent edges of p-contact layer. The dark space gap may be less than 20% of the pixel pitch. The dark space gap may be in a range of from 4 ?m to 10 ?m.
    Type: Application
    Filed: March 5, 2021
    Publication date: September 8, 2022
    Applicant: Lumileds LLC
    Inventors: Erik William Young, Dennis Scott, Rajat Sharma, Toni Lopez, Yu-Chen Shen
  • Publication number: 20220286038
    Abstract: An example electronic device includes a controller to determine a user touch detection by a power adaptor coupled to the electronic device to operate the electronic device in an AC power mode. The power adaptor may comprise a proximity sensor to detect a user touch for detachment of the power adaptor from the electronic device, and a control circuit to operate a configuration pin in a low output mode to signal user touch detection. The controller may initiate central processing unit (CPU) throttling to reduce power consumption by the electronic device. The controller may further stop CPU throttling in response to detecting that the power adaptor has been detached from the electronic device. Further, the controller may switch the electronic device to a DC power mode to operate using DC power supplied by a battery of the electronic device in response to power adaptor detachment.
    Type: Application
    Filed: October 18, 2019
    Publication date: September 8, 2022
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: Ting-Yang Tsai, Yi-Chen Chen, Ching-Lung Wang, Yu-Min Shen
  • Patent number: 11411147
    Abstract: A wavelength converting layer is partially diced to generate a first and second wavelength converting layer segment and to allow partial isolation between the first segment and the second segment such that the wavelength converting layer segments are connected by a connecting wavelength converting layer. The first and second wavelength converting layer segments are attached to a first and second light emitting device, respectively to create a first and second pixel. The connecting wavelength converting layer segment is removed to allow complete isolation between the first pixel and the second pixel. An optical isolation material is applied to exposed surfaces of the first and second pixel and a sacrificial portion of the wavelength converting layer segments and optical isolation material attached to the sacrificial portion is removed from a surface facing away from the first light emitting device, to expose a emitting surface of the first wavelength converting layer segment.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: August 9, 2022
    Assignee: Lumileds LLC
    Inventors: Kentaro Shimizu, Hisashi Masui, Yu-Chen Shen, Danielle Russell Chamberlin, Peter Josef Schmidt
  • Patent number: 11393955
    Abstract: A light emitting diode (LED) including an epitaxial stacked layer, first and second reflective layers which are disposed at two sides of the epitaxial stacked layer, a current conducting layer and first and second electrodes and a manufacturing thereof are provided. The epitaxial stacked layer includes a first-type and a second-type semiconductor layers and an active layer. A main light emitting surface with a light transmittance >0% and ?10% is formed on one of the two reflective layers. The current conducting layer contacts the second-type semiconductor layer. The first electrode is electrically connected to the first-type semiconductor layer. The second electrode is electrically connected to the second-type semiconductor layer via the current conducting layer. A contact scope of the current conducting layer and the second-type semiconductor layer is served as a light-emitting scope overlapping the two layers, but not overlapping the two electrodes.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: July 19, 2022
    Assignee: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Kai-Shun Kang, Tung-Lin Chuang, Yu-Chen Kuo, Yan-Ting Lan, Chih-Ming Shen, Jing-En Huang
  • Publication number: 20220223766
    Abstract: A device may include a wavelength converting layer on an epitaxial layer. The wavelength converting layer may include a first surface having a width that is equal to a width of the epitaxial layer, a second surface having a width that is less than the width of the first surface, and angled sidewalls. A conformal non-emission layer may be formed on the angled sidewalls and sidewalls of the epitaxial layer, such that the second surface of the wavelength converting layer is exposed.
    Type: Application
    Filed: March 31, 2022
    Publication date: July 14, 2022
    Applicant: LUMILEDS LLC
    Inventors: Yu-Chen SHEN, Luke GORDON, Amil Ashok PATEL
  • Publication number: 20220204936
    Abstract: A non-fibrous film of which the composition includes a collagen and a polyester polymer is provided. A content of the polyester polymer in the non-fibrous film is 1-60 wt %. Moreover, the non-fibrous film has a swelling rate of 1-200 ?m/hour or a swelling proportion per unit time of 0.1-2%/hour in an aqueous liquid.
    Type: Application
    Filed: September 15, 2021
    Publication date: June 30, 2022
    Applicant: Industrial Technology Research Institute
    Inventors: Yu-Bing LIOU, Chih-Ching LIAO, Hsin-Yi HSU, Ying-Wen SHEN, Yun-Chung TENG, Hsin-Hsin SHEN, Yi-Chen CHEN
  • Patent number: 11374145
    Abstract: Methods of fabricating solar cells using UV-curing of light-receiving surfaces of the solar cells, and the resulting solar cells, are described herein. In an example, a method of fabricating a solar cell includes forming a passivating dielectric layer on a light-receiving surface of a silicon substrate. The method also includes forming an anti-reflective coating (ARC) layer below the passivating dielectric layer. The method also includes exposing the ARC layer to ultra-violet (UV) radiation. The method also includes, subsequent to exposing the ARC layer to ultra-violet (UV) radiation, thermally annealing the ARC layer.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: June 28, 2022
    Assignees: SunPower Corporation, Total Marketing Services
    Inventors: Yu-Chen Shen, PĂ©rine Jaffrennou, Gilles Olav Tanguy Sylvain Poulain, Michael C. Johnson, Seung Bum Rim
  • Patent number: 11355548
    Abstract: A first component with a first sidewall and a second component with a second sidewall may be mounted onto an expandable film such that an original distance X is the distance between the first sidewall and the second sidewall. The expandable film may be expanded such that an expanded distance Y is the distance between the first sidewall and the second sidewall and expanded distance Y is greater than original distance X. A first sidewall material may be applied within at least a part of a space between the first sidewall and the second sidewall. The expandable film may be expanded such that a contracted distance Z is the distance between the first sidewall and the second sidewall, and contracted distance Z is less than expanded distance Y.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: June 7, 2022
    Assignee: Lumileds LLC
    Inventors: Tze Yang Hin, Yu-Chen Shen, Luke Gordon, Danielle Russell Chamberlin, Daniel Bernardo Roitman
  • Patent number: 11296262
    Abstract: A device may include a wavelength converting layer on an epitaxial layer. The wavelength converting layer may include a first surface having a width that is equal to a width of the epitaxial layer, a second surface having a width that is less than the width of the first surface, and angled sidewalls. A conformal non-emission layer may be formed on the angled sidewalls and sidewalls of the epitaxial layer, such that the second surface of the wavelength converting layer is exposed.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: April 5, 2022
    Assignee: Lumileds LLC
    Inventors: Yu-Chen Shen, Luke Gordon, Amil Ashok Patel
  • Publication number: 20220102593
    Abstract: A light emitting device and method of forming a light emitting device are disclosed. The light emitting device includes a light emitting diode and a phosphor layer formed on the light emitting diode, the phosphor layer including a plurality of phosphor particles formed in a particle layer, the particle layer including interstices between the phosphor particles, and a matrix material disposed in a portion of the interstices. A plurality of cavities may be disposed in a remaining portion of the interstices.
    Type: Application
    Filed: September 29, 2020
    Publication date: March 31, 2022
    Applicant: LUMILEDS LLC
    Inventors: Joerg FELDMANN, Marcel Rene BOHMER, Marcel van-Gerwen, Yu-Chen SHEN
  • Publication number: 20210288214
    Abstract: Described are light emitting diode (LED) devices comprising a plurality of mesas defining pixels, each of the mesas comprising semiconductor layers, an N-contact material in a space between each of the plurality of mesas, a dielectric material which insulates sidewalls of the P-type layer and the active region from the metal. A hard mask layer is above the semiconductor layers, the hard mask layer having a plurality of openings therein, each partially filled with a liner layer and partially filled with a P-metal material plug, the P-metal material plug having a width; and a passivation film is on the hard mask layer, the passivation film having a plurality of passivation film openings therein defining a width, the width of each passivation film opening being less than the width of a combination of the P-metal material plug and the liner layer.
    Type: Application
    Filed: March 5, 2021
    Publication date: September 16, 2021
    Applicant: Lumileds LLC
    Inventors: Erik William Young, Yu-Chen Shen, Chee Yin Foo, Yeow Meng Teo
  • Patent number: 11092311
    Abstract: A light emitting device may comprise a cup having a wall extending from a first area of the cup to a second area of the cup. The wall is formed from or coated with a reflective material. The light emitting device may comprise a light extraction bridge extending beyond an outer diameter of at least a portion of the wall for directing light into the air. The light may be produced by an LED die mounted at the second area of the cup such that at least some of a light emitted from the LED die exits the cup, having been reflected from the wall and the light extraction bridge.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: August 17, 2021
    Assignee: Lumileds LLC
    Inventors: Yu-Chen Shen, Oleg B. Shchekin
  • Publication number: 20210249551
    Abstract: Solar cells having emitter regions composed of wide bandgap semiconductor material are described. In an example, a method includes forming, in a process tool having a controlled atmosphere, a thin dielectric layer on a surface of a semiconductor substrate of the solar cell. The semiconductor substrate has a bandgap. Without removing the semiconductor substrate from the controlled atmosphere of the process tool, a semiconductor layer is formed on the thin dielectric layer. The semiconductor layer has a bandgap at least approximately 0.2 electron Volts (eV) above the bandgap of the semiconductor substrate.
    Type: Application
    Filed: February 23, 2021
    Publication date: August 12, 2021
    Inventors: Richard M. Swanson, Marius M. Bunea, Michael C. Johnson, David D. Smith, Yu-Chen Shen, Peter J. Cousins, Tim Dennis
  • Patent number: 10957809
    Abstract: Solar cells having emitter regions composed of wide bandgap semiconductor material are described. In an example, a method includes forming, in a process tool having a controlled atmosphere, a thin dielectric layer on a surface of a semiconductor substrate of the solar cell. The semiconductor substrate has a bandgap. Without removing the semiconductor substrate from the controlled atmosphere of the process tool, a semiconductor layer is formed on the thin dielectric layer. The semiconductor layer has a bandgap at least approximately 0.2 electron Volts (eV) above the bandgap of the semiconductor substrate.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: March 23, 2021
    Assignee: SunPower Corporation
    Inventors: Richard M. Swanson, Marius M. Bunea, Michael C. Johnson, David D. Smith, Yu-Chen Shen, Peter J. Cousins, Tim Dennis
  • Patent number: 10854794
    Abstract: A wavelength converting layer is partially diced to generate a first and second wavelength converting layer segment and to allow partial isolation between the first segment and the second segment such that the wavelength converting layer segments are connected by a connecting wavelength converting layer. The first and second wavelength converting layer segments are attached to a first and second light emitting device, respectively to create a first and second pixel. The connecting wavelength converting layer segment is removed to allow complete isolation between the first pixel and the second pixel. An optical isolation material is applied to exposed surfaces of the first and second pixel and a sacrificial portion of the wavelength converting layer segments and optical isolation material attached to the sacrificial portion is removed from a surface facing away from the first light emitting device, to expose a emitting surface of the first wavelength converting layer segment.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: December 1, 2020
    Assignee: Lumileds LLC
    Inventors: Kentaro Shimizu, Hisashi Masui, Yu-Chen Shen, Danielle Russell Chamberlin, Peter Josef Schmidt