Patents by Inventor Yu-Chen Shen

Yu-Chen Shen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11355548
    Abstract: A first component with a first sidewall and a second component with a second sidewall may be mounted onto an expandable film such that an original distance X is the distance between the first sidewall and the second sidewall. The expandable film may be expanded such that an expanded distance Y is the distance between the first sidewall and the second sidewall and expanded distance Y is greater than original distance X. A first sidewall material may be applied within at least a part of a space between the first sidewall and the second sidewall. The expandable film may be expanded such that a contracted distance Z is the distance between the first sidewall and the second sidewall, and contracted distance Z is less than expanded distance Y.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: June 7, 2022
    Assignee: Lumileds LLC
    Inventors: Tze Yang Hin, Yu-Chen Shen, Luke Gordon, Danielle Russell Chamberlin, Daniel Bernardo Roitman
  • Patent number: 11296262
    Abstract: A device may include a wavelength converting layer on an epitaxial layer. The wavelength converting layer may include a first surface having a width that is equal to a width of the epitaxial layer, a second surface having a width that is less than the width of the first surface, and angled sidewalls. A conformal non-emission layer may be formed on the angled sidewalls and sidewalls of the epitaxial layer, such that the second surface of the wavelength converting layer is exposed.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: April 5, 2022
    Assignee: Lumileds LLC
    Inventors: Yu-Chen Shen, Luke Gordon, Amil Ashok Patel
  • Publication number: 20220102593
    Abstract: A light emitting device and method of forming a light emitting device are disclosed. The light emitting device includes a light emitting diode and a phosphor layer formed on the light emitting diode, the phosphor layer including a plurality of phosphor particles formed in a particle layer, the particle layer including interstices between the phosphor particles, and a matrix material disposed in a portion of the interstices. A plurality of cavities may be disposed in a remaining portion of the interstices.
    Type: Application
    Filed: September 29, 2020
    Publication date: March 31, 2022
    Applicant: LUMILEDS LLC
    Inventors: Joerg FELDMANN, Marcel Rene BOHMER, Marcel van-Gerwen, Yu-Chen SHEN
  • Publication number: 20210288214
    Abstract: Described are light emitting diode (LED) devices comprising a plurality of mesas defining pixels, each of the mesas comprising semiconductor layers, an N-contact material in a space between each of the plurality of mesas, a dielectric material which insulates sidewalls of the P-type layer and the active region from the metal. A hard mask layer is above the semiconductor layers, the hard mask layer having a plurality of openings therein, each partially filled with a liner layer and partially filled with a P-metal material plug, the P-metal material plug having a width; and a passivation film is on the hard mask layer, the passivation film having a plurality of passivation film openings therein defining a width, the width of each passivation film opening being less than the width of a combination of the P-metal material plug and the liner layer.
    Type: Application
    Filed: March 5, 2021
    Publication date: September 16, 2021
    Applicant: Lumileds LLC
    Inventors: Erik William Young, Yu-Chen Shen, Chee Yin Foo, Yeow Meng Teo
  • Patent number: 11092311
    Abstract: A light emitting device may comprise a cup having a wall extending from a first area of the cup to a second area of the cup. The wall is formed from or coated with a reflective material. The light emitting device may comprise a light extraction bridge extending beyond an outer diameter of at least a portion of the wall for directing light into the air. The light may be produced by an LED die mounted at the second area of the cup such that at least some of a light emitted from the LED die exits the cup, having been reflected from the wall and the light extraction bridge.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: August 17, 2021
    Assignee: Lumileds LLC
    Inventors: Yu-Chen Shen, Oleg B. Shchekin
  • Publication number: 20210249551
    Abstract: Solar cells having emitter regions composed of wide bandgap semiconductor material are described. In an example, a method includes forming, in a process tool having a controlled atmosphere, a thin dielectric layer on a surface of a semiconductor substrate of the solar cell. The semiconductor substrate has a bandgap. Without removing the semiconductor substrate from the controlled atmosphere of the process tool, a semiconductor layer is formed on the thin dielectric layer. The semiconductor layer has a bandgap at least approximately 0.2 electron Volts (eV) above the bandgap of the semiconductor substrate.
    Type: Application
    Filed: February 23, 2021
    Publication date: August 12, 2021
    Inventors: Richard M. Swanson, Marius M. Bunea, Michael C. Johnson, David D. Smith, Yu-Chen Shen, Peter J. Cousins, Tim Dennis
  • Patent number: 10957809
    Abstract: Solar cells having emitter regions composed of wide bandgap semiconductor material are described. In an example, a method includes forming, in a process tool having a controlled atmosphere, a thin dielectric layer on a surface of a semiconductor substrate of the solar cell. The semiconductor substrate has a bandgap. Without removing the semiconductor substrate from the controlled atmosphere of the process tool, a semiconductor layer is formed on the thin dielectric layer. The semiconductor layer has a bandgap at least approximately 0.2 electron Volts (eV) above the bandgap of the semiconductor substrate.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: March 23, 2021
    Assignee: SunPower Corporation
    Inventors: Richard M. Swanson, Marius M. Bunea, Michael C. Johnson, David D. Smith, Yu-Chen Shen, Peter J. Cousins, Tim Dennis
  • Patent number: 10854794
    Abstract: A wavelength converting layer is partially diced to generate a first and second wavelength converting layer segment and to allow partial isolation between the first segment and the second segment such that the wavelength converting layer segments are connected by a connecting wavelength converting layer. The first and second wavelength converting layer segments are attached to a first and second light emitting device, respectively to create a first and second pixel. The connecting wavelength converting layer segment is removed to allow complete isolation between the first pixel and the second pixel. An optical isolation material is applied to exposed surfaces of the first and second pixel and a sacrificial portion of the wavelength converting layer segments and optical isolation material attached to the sacrificial portion is removed from a surface facing away from the first light emitting device, to expose a emitting surface of the first wavelength converting layer segment.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: December 1, 2020
    Assignee: Lumileds LLC
    Inventors: Kentaro Shimizu, Hisashi Masui, Yu-Chen Shen, Danielle Russell Chamberlin, Peter Josef Schmidt
  • Publication number: 20200335672
    Abstract: A wavelength converting layer is partially diced to generate a first and second wavelength converting layer segment and to allow partial isolation between the first segment and the second segment such that the wavelength converting layer segments are connected by a connecting wavelength converting layer. The first and second wavelength converting layer segments are attached to a first and second light emitting device, respectively to create a first and second pixel. The connecting wavelength converting layer segment is removed to allow complete isolation between the first pixel and the second pixel. An optical isolation material is applied to exposed surfaces of the first and second pixel and a sacrificial portion of the wavelength converting layer segments and optical isolation material attached to the sacrificial portion is removed from a surface facing away from the first light emitting device, to expose a emitting surface of the first wavelength converting layer segment.
    Type: Application
    Filed: June 30, 2020
    Publication date: October 22, 2020
    Applicant: LUMILEDS LLC
    Inventors: Kentaro SHIMIZU, Hisashi MASUI, Yu-Chen SHEN, Danielle Russell CHAMBERLIN, Peter Josef SCHMIDT
  • Patent number: 10804843
    Abstract: Methods of testing a semiconductor, and semiconductor testing apparatus, are described. In an example, a method for testing a semiconductor can include applying light on the semiconductor to induce photonic degradation. The method can also include receiving a photoluminescence measurement induced from the applied light from the semiconductor and monitoring the photonic degradation of the semiconductor from the photoluminescence measurement.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: October 13, 2020
    Assignee: SunPower Corporation
    Inventors: Xiuwen Tu, David Aitan Soltz, Michael C. Johnson, Seung Bum Rim, Taiqing Qiu, Yu-Chen Shen, Kieran Mark Tracy
  • Publication number: 20200292149
    Abstract: A light emitting device may comprise a cup having a wall extending from a first area of the cup to a second area of the cup. The wall is formed from or coated with a reflective material. The light emitting device may comprise a light extraction bridge extending beyond an outer diameter of at least a portion of the wall for directing light into the air. The light may be produced by an LED die mounted at the second area of the cup such that at least some of a light emitted from the LED die exits the cup, having been reflected from the wall and the light extraction bridge.
    Type: Application
    Filed: March 11, 2020
    Publication date: September 17, 2020
    Inventors: Yu-Chen Shen, Oleg B. Shchekin
  • Publication number: 20200111924
    Abstract: Methods of fabricating solar cells using UV-curing of light-receiving surfaces of the solar cells, and the resulting solar cells, are described herein. In an example, a method of fabricating a solar cell includes forming a passivating dielectric layer on a light-receiving surface of a silicon substrate. The method also includes forming an anti-reflective coating (ARC) layer below the passivating dielectric layer. The method also includes exposing the ARC layer to ultra-violet (UV) radiation. The method also includes, subsequent to exposing the ARC layer to ultra-violet (UV) radiation, thermally annealing the ARC layer.
    Type: Application
    Filed: December 5, 2019
    Publication date: April 9, 2020
    Inventors: Yu-Chen Shen, PĂ©rine Jaffrennou, Gilles Olav Tanguy Sylvain Poulain, Michael C. Johnson, Seung Bum Rim
  • Publication number: 20200091366
    Abstract: Solar cells having emitter regions composed of wide bandgap semiconductor material are described. In an example, a method includes forming, in a process tool having a controlled atmosphere, a thin dielectric layer on a surface of a semiconductor substrate of the solar cell. The semiconductor substrate has a bandgap. Without removing the semiconductor substrate from the controlled atmosphere of the process tool, a semiconductor layer is formed on the thin dielectric layer. The semiconductor layer has a bandgap at least approximately 0.2 electron Volts (eV) above the bandgap of the semiconductor substrate.
    Type: Application
    Filed: November 22, 2019
    Publication date: March 19, 2020
    Inventors: Richard M. Swanson, Marius M. Bunea, Michael C. Johnson, David D. Smith, Yu-Chen Shen, Peter J. Cousins, Tim Dennis
  • Patent number: 10490685
    Abstract: Solar cells having emitter regions composed of wide bandgap semiconductor material are described. In an example, a method includes forming, in a process tool having a controlled atmosphere, a thin dielectric layer on a surface of a semiconductor substrate of the solar cell. The semiconductor substrate has a bandgap. Without removing the semiconductor substrate from the controlled atmosphere of the process tool, a semiconductor layer is formed on the thin dielectric layer. The semiconductor layer has a bandgap at least approximately 0.2 electron Volts (eV) above the bandgap of the semiconductor substrate.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: November 26, 2019
    Assignee: SunPower Corporation
    Inventors: Richard M. Swanson, Marius M. Bunea, Michael C. Johnson, David D. Smith, Yu-Chen Shen, Peter J. Cousins, Tim Dennis
  • Publication number: 20190273467
    Abstract: Methods of testing a semiconductor, and semiconductor testing apparatus, are described. In an example, a method for testing a semiconductor can include applying light on the semiconductor to induce photonic degradation. The method can also include receiving a photoluminescence measurement induced from the applied light from the semiconductor and monitoring the photonic degradation of the semiconductor from the photoluminescence measurement.
    Type: Application
    Filed: March 11, 2019
    Publication date: September 5, 2019
    Inventors: Xiuwen Tu, David Aitan Soltz, Michael C. Johnson, Seung Bum Rim, Taiqing Qiu, Yu-Chen Shen, Kieran Mark Tracy
  • Publication number: 20190198564
    Abstract: A device may include a metal contact between a first isolation region and a second isolation region on a first surface of an epitaxial layer. The device may include a first sidewall and a second sidewall on a second surface of the epitaxial layer distal to the first isolation region and the second isolation region. The device may include a wavelength converting layer on the epitaxial layer between the first sidewall and the second sidewall.
    Type: Application
    Filed: December 19, 2018
    Publication date: June 27, 2019
    Applicant: Lumileds LLC
    Inventors: Ashish TANDON, Rajat SHARMA, Joseph Robert FLEMISH, Andrei PAPOU, Wen YU, Erik YOUNG, Yu-Chen SHEN, Luke GORDON
  • Publication number: 20190198727
    Abstract: A device may include a wavelength converting layer on an epitaxial layer. The wavelength converting layer may include a first surface having a width that is equal to a width of the epitaxial layer, a second surface having a width that is less than the width of the first surface, and angled sidewalls. A conformal non-emission layer may be formed on the angled sidewalls and sidewalls of the epitaxial layer, such that the second surface of the wavelength converting layer is exposed.
    Type: Application
    Filed: December 19, 2018
    Publication date: June 27, 2019
    Applicant: Lumileds LLC
    Inventors: Yu-Chen SHEN, Luke GORDON, Amil Ashok PATEL
  • Publication number: 20190189865
    Abstract: A wavelength converting layer is partially diced to generate a first and second wavelength converting layer segment and to allow partial isolation between the first segment and the second segment such that the wavelength converting layer segments are connected by a connecting wavelength converting layer. The first and second wavelength converting layer segments are attached to a first and second light emitting device, respectively to create a first and second pixel. The connecting wavelength converting layer segment is removed to allow complete isolation between the first pixel and the second pixel. An optical isolation material is applied to exposed surfaces of the first and second pixel and a sacrificial portion of the wavelength converting layer segments and optical isolation material attached to the sacrificial portion is removed from a surface facing away from the first light emitting device, to expose a emitting surface of the first wavelength converting layer segment.
    Type: Application
    Filed: December 19, 2018
    Publication date: June 20, 2019
    Applicant: Lumileds LLC
    Inventors: Kentaro SHIMIZU, Hisashi MASUI, Yu-Chen SHEN, Danielle Russell CHAMBERLIN, Peter Josef SCHMIDT
  • Publication number: 20190189682
    Abstract: A light emitting diode (LED) array may include an epitaxial layer comprising a first pixel and a second pixel separated by an isolation region. A reflective layer may be formed on the epitaxial layer. A p-type contact layer may be formed on the reflective layer. The isolation region may have a width that is at least a width of a trench formed in a p-type contact layer.
    Type: Application
    Filed: December 19, 2018
    Publication date: June 20, 2019
    Applicant: Lumileds LLC
    Inventors: Erik YOUNG, Joseph Robert FLEMISH, Ashish TANDON, Rajat SHARMA, Andrei PAPOU, Wen YU, Yu-Chen SHEN, Luke GORDON
  • Publication number: 20190189683
    Abstract: A first component with a first sidewall and a second component with a second sidewall may be mounted onto an expandable film such that an original distance X is the distance between the first sidewall and the second sidewall. The expandable film may be expanded such that an expanded distance Y is the distance between the first sidewall and the second sidewall and expanded distance Y is greater than original distance X. A first sidewall material may be applied within at least a part of a space between the first sidewall and the second sidewall. The expandable film may be expanded such that a contracted distance Z is the distance between the first sidewall and the second sidewall, and contracted distance Z is less than expanded distance Y.
    Type: Application
    Filed: December 19, 2018
    Publication date: June 20, 2019
    Applicant: Lumileds LLC
    Inventors: Tze Yang HIN, Yu-Chen SHEN, Luke GORDON, Danielle Russell CHAMBERLIN, Daniel Bernardo ROITMAN